Contents

Preface xiii
Acknowledgements xv

1 Introduction and Overview 1
1.1 Preamble: What do ‘Reliability’, ‘Risk’ and ‘Robustness’ Mean? 1
1.2 Objectives and Prospective Readership 3
1.3 Reliability, Risk and Survival: State-of-the-Art 3
1.4 Risk Management: A Motivation for Risk Analysis 4
1.5 Books on Reliability, Risk and Survival Analysis 6
1.6 Overview of the Book 7

2 The Quantification of Uncertainty 9
2.1 Uncertain Quantities and Uncertain Events: Their Definition and Codification 9
2.2 Probability: A Satisfactory Way to Quantify Uncertainty 10
 2.2.1 The Rules of Probability 11
 2.2.2 Justifying the Rules of Probability 12
2.3 Overview of the Different Interpretations of Probability 13
 2.3.1 A Brief History of Probability 14
 2.3.2 The Different Kinds of Probability 16
2.4 Extending the Rules of Probability: Law of Total Probability and Bayes’ Law 19
 2.4.1 Marginalization 20
 2.4.2 The Law of Total Probability 20
 2.4.3 Bayes’ Law: The Incorporation of Evidence and the Likelihood 20
2.5 The Bayesian Paradigm: A Prescription for Reliability, Risk and Survival Analysis 22

2.6 Probability Models, Parameters, Inference and Prediction 23
 2.6.1 The Genesis of Probability Models and Their Parameters 24
 2.6.2 Statistical Inference and Probabilistic Prediction 26

2.7 Testing Hypotheses: Posterior Odds and Bayes Factors 27
 2.7.1 Bayes Factors: Weight of Evidence and Change in Odds 28
 2.7.2 Uses of the Bayes Factor 30
 2.7.3 Alternatives to Bayes Factors 31
3 Exchangeability and Indifference
3.1 Introduction to Exchangeability: de Finetti’s Theorem
 3.1.1 Motivation for the Judgment of Exchangeability
 3.1.2 Relationship between Independence and Exchangeability
 3.1.3 de Finetti’s Representation Theorem for Zero-one Exchangeable Sequences
 3.1.4 Exchangeable Sequences and the Law of Large Numbers
3.2 de Finetti-style Theorems for Infinite Sequences of Non-binary Random Quantities
 3.2.1 Sufficiency and Indifference in Zero-one Exchangeable Sequences
 3.2.2 Invariance Conditions Leading to Mixtures of Other Distributions
3.3 Error Bounds on de Finetti-style Results for Finite Sequences of Random Quantities
 3.3.1 Bounds for Finitely Extendible Zero-one Random Quantities
 3.3.2 Bounds for Finitely Extendible Non-binary Random Quantities

4 Stochastic Models of Failure
4.1 Introduction
4.2 Preliminaries: Univariate, Multivariate and Multi-indexed Distribution Functions
4.3 The Predictive Failure Rate Function of a Univariate Probability Distribution
 4.3.1 The Case of Discontinuity
4.4 Interpretation and Uses of the Failure Rate Function – the Model Failure Rate
 4.4.1 The True Failure Rate: Does it Exist?
 4.4.2 Decreasing Failure Rates, Reliability Growth, Burn-in and the Bathtub Curve
 4.4.3 The Retrospective (or Reversed) Failure Rate
4.5 Multivariate Analogues of the Failure Rate Function
 4.5.1 The Hazard Gradient
 4.5.2 The Multivariate Failure Rate Function
 4.5.3 The Conditional Failure Rate Functions
4.6 The Hazard Potential of Items and Individuals
 4.6.1 Hazard Potentials and Dependent Lifetimes
 4.6.2 The Hazard Gradient and Conditional Hazard Potentials
4.7 Probability Models for Interdependent Lifetimes
 4.7.1 Preliminaries: Bivariate Distributions
 4.7.2 The Bivariate Exponential Distributions of Gumbel
 4.7.3 Freund’s Bivariate Exponential Distribution
 4.7.4 The Bivariate Exponential of Marshall and Olkin
 4.7.5 The Bivariate Pareto as a Failure Model
 4.7.6 A Bivariate Exponential Induced by a Shot-noise Process
 4.7.7 A Bivariate Exponential Induced by a Bivariate Pareto’s Copula
 4.7.8 Other Specialized Bivariate Distributions
5 Parametric Failure Data Analysis

5.1 Introduction and Perspective

5.2 Assessing Predictive Distributions in the Absence of Data

- 5.2.1 The Exponential as a Chance Distribution
- 5.2.2 The Weibull (and Gamma) as a Chance Distribution
- 5.2.3 The Bernoulli as a Chance Distribution
- 5.2.4 The Poisson as a Chance Distribution
- 5.2.5 The Generalized Gamma as a Chance Distribution
- 5.2.6 The Inverse Gaussian as a Chance Distribution

5.3 Prior Distributions in Chance Distributions

- 5.3.1 Eliciting Prior Distributions via Expert Testimonies
- 5.3.2 Using Objective (or Default) Priors

5.4 Predictive Distributions Incorporating Failure Data

- 5.4.1 Design Strategies for Industrial Life-testing
- 5.4.2 Stopping Rules: Non-informative and Informative
- 5.4.3 The Total Time on Test
- 5.4.4 Exponential Life-testing Procedures
- 5.4.5 Weibull Life-testing Procedures
- 5.4.6 Life-testing Under the Generalized Gamma and the Inverse Gaussian
- 5.4.7 Bernoulli Life-testing Procedures
- 5.4.8 Life-testing and Inference Under the BVE

5.5 Information from Life-tests: Learning from Data

- 5.5.1 Preliminaries: Entropy and Information
- 5.5.2 Learning for Inference from Life-test Data: Testing for Confidence
- 5.5.3 Life-testing for Decision Making: Acceptance Sampling

5.6 Optimal Testing: Design of Life-testing Experiments

5.7 Adversarial Life-testing and Acceptance Sampling

5.8 Accelerated Life-testing and Dose-response Experiments

- 5.8.1 Formulating Accelerated Life-testing Problems
- 5.8.2 The Kalman Filter Model for Prediction and Smoothing
- 5.8.3 Inference from Accelerated Tests Using the Kalman Filter
- 5.8.4 Designing Accelerated Life-testing Experiments

6 Composite Reliability: Signatures

6.1 Introduction: Hierarchical Models

6.2 ‘Composite Reliability’: Partial Exchangeability

- 6.2.1 Simulating Exchangeable and Partially Exchangeable Sequences
- 6.2.2 The Composite Reliability of Ultra-reliable Units
- 6.2.3 Assessing Reliability and Composite Reliability

6.3 Signature Analysis and Signatures as Covariates

- 6.3.1 Assessing the Power Spectrum via a Regression Model
- 6.3.2 Bayesian Assessment of the Power Spectrum
9.5 Prior Distributions for the Cumulative Hazard Function
- 9.5.1 Neutral to the Right Probabilities and Gamma Process Priors
- 9.5.2 Beta Process Priors for the Cumulative Hazard

9.6 Priors for the Cumulative Distribution Function
- 9.6.1 The Dirichlet Process Prior
- 9.6.2 Neutral to the Right-prior Processes

10 Survivability of Co-operative, Competing and Vague Systems

10.1 Introduction: Notion of Systems and their Components

10.1.1 Overview of the Chapter

10.2 Coherent Systems and their Qualitative Properties

10.3 The Survivability of Coherent Systems

10.3.1 Performance Processes and their Driving Processes

10.3.2 System Survivability Under Hierarchical Independence

10.3.3 System Survivability Under Interdependence

10.3.4 Prior Distributions on the Unit Hypercube

10.4 Machine Learning Methods in Survivability Assessment

10.4.1 An Overview of the Neural Net Methodology

10.4.2 A Two-phased Neural Net for System Survivability

10.5 Reliability Allocation: Optimal System Design

10.5.1 The Decision Theoretic Formulation

10.5.2 Reliability Apportionment for Series Systems

10.5.3 Reliability Apportionment for Parallel Redundant Systems

10.5.4 Apportioning Node Reliabilities in Networks

10.5.5 Apportioning Reliability Under Interdependence

10.6 The Utility of Reliability: Optimum System Selection

10.6.1 Decision-making for System Selection

10.6.2 The Utility of Reliability

10.7 Multi-state and Vague Stochastic Systems

10.7.1 Vague Imprecision

10.7.2 Many-valued Logic: A Synopsis

10.7.3 Consistency Profiles and Probabilities of Vague Sets

10.7.4 Reliability of Components in Vague Binary States

10.7.5 Reliability of Systems in Vague Binary States

10.7.6 Concluding Comments on Vague Stochastic Systems

11 Reliability and Survival in Econometrics and Finance

11.1 Introduction and Overview

11.2 Relating Metrics of Reliability to those of Income Inequality

11.2.1 Some Metrics of Reliability and Survival

11.2.2 Metrics of Income Inequality

11.2.3 Relating the Metrics

11.2.4 The Entropy of Income Shares

11.2.5 Lorenz Curve Analysis of Failure Data

11.3 Invoking Reliability Theory in Financial Risk Assessment

11.3.1 Asset Pricing of Risk-free Bonds: An Overview

11.3.2 Re-interpreting the Exponentiation Formula

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Prior Distributions for the Cumulative Hazard Function</td>
<td>253</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Neutral to the Right Probabilities and Gamma Process Priors</td>
<td>253</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Beta Process Priors for the Cumulative Hazard</td>
<td>255</td>
</tr>
<tr>
<td>9.6</td>
<td>Priors for the Cumulative Distribution Function</td>
<td>259</td>
</tr>
<tr>
<td>9.6.1</td>
<td>The Dirichlet Process Prior</td>
<td>260</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Neutral to the Right-prior Processes</td>
<td>264</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction: Notion of Systems and their Components</td>
<td>269</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Overview of the Chapter</td>
<td>269</td>
</tr>
<tr>
<td>10.2</td>
<td>Coherent Systems and their Qualitative Properties</td>
<td>270</td>
</tr>
<tr>
<td>10.3</td>
<td>The Survivability of Coherent Systems</td>
<td>281</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Performance Processes and their Driving Processes</td>
<td>282</td>
</tr>
<tr>
<td>10.3.2</td>
<td>System Survivability Under Hierarchical Independence</td>
<td>283</td>
</tr>
<tr>
<td>10.3.3</td>
<td>System Survivability Under Interdependence</td>
<td>284</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Prior Distributions on the Unit Hypercube</td>
<td>286</td>
</tr>
<tr>
<td>10.4</td>
<td>Machine Learning Methods in Survivability Assessment</td>
<td>291</td>
</tr>
<tr>
<td>10.4.1</td>
<td>An Overview of the Neural Net Methodology</td>
<td>292</td>
</tr>
<tr>
<td>10.4.2</td>
<td>A Two-phased Neural Net for System Survivability</td>
<td>293</td>
</tr>
<tr>
<td>10.5</td>
<td>Reliability Allocation: Optimal System Design</td>
<td>294</td>
</tr>
<tr>
<td>10.5.1</td>
<td>The Decision Theoretic Formulation</td>
<td>294</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Reliability Apportionment for Series Systems</td>
<td>296</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Reliability Apportionment for Parallel Redundant Systems</td>
<td>297</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Apportioning Node Reliabilities in Networks</td>
<td>298</td>
</tr>
<tr>
<td>10.5.5</td>
<td>Apportioning Reliability Under Interdependence</td>
<td>298</td>
</tr>
<tr>
<td>10.6</td>
<td>The Utility of Reliability: Optimum System Selection</td>
<td>299</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Decision-making for System Selection</td>
<td>300</td>
</tr>
<tr>
<td>10.6.2</td>
<td>The Utility of Reliability</td>
<td>301</td>
</tr>
<tr>
<td>10.7</td>
<td>Multi-state and Vague Stochastic Systems</td>
<td>303</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Vague Imprecision</td>
<td>304</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Many-valued Logic: A Synopsis</td>
<td>305</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Consistency Profiles and Probabilities of Vague Sets</td>
<td>305</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Reliability of Components in Vague Binary States</td>
<td>307</td>
</tr>
<tr>
<td>10.7.5</td>
<td>Reliability of Systems in Vague Binary States</td>
<td>307</td>
</tr>
<tr>
<td>10.7.6</td>
<td>Concluding Comments on Vague Stochastic Systems</td>
<td>308</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction and Overview</td>
<td>309</td>
</tr>
<tr>
<td>11.2</td>
<td>Relating Metrics of Reliability to those of Income Inequality</td>
<td>310</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Some Metrics of Reliability and Survival</td>
<td>310</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Metrics of Income Inequality</td>
<td>311</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Relating the Metrics</td>
<td>313</td>
</tr>
<tr>
<td>11.2.4</td>
<td>The Entropy of Income Shares</td>
<td>315</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Lorenz Curve Analysis of Failure Data</td>
<td>315</td>
</tr>
<tr>
<td>11.3</td>
<td>Invoking Reliability Theory in Financial Risk Assessment</td>
<td>317</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Asset Pricing of Risk-free Bonds: An Overview</td>
<td>317</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Re-interpreting the Exponentiation Formula</td>
<td>319</td>
</tr>
</tbody>
</table>
CONTENTS

11.3.3 A Characterization of Present Value Functions 320
11.3.4 Present Value Functions Under Stochastic Interest Rates 325
11.4 Inferential Issues in Asset Pricing 328
11.4.1 Formulating the Inferential Problem 329
11.4.2 A Strategy for Pooling Present Value Functions 329
11.4.3 Illustrative Example: Pooling Present Value Functions 331
11.5 Concluding Comments 332

Appendix A Markov Chain Monte Carlo Simulation 335
 A.1 The Gibbs Sampling Algorithm 335

Appendix B Fourier Series Models and the Power Spectrum 339
 B.1 Preliminaries: Trigonometric Functions 339
 B.2 Orthogonality of Trigonometric Functions 340
 B.3 The Fourier Representation of a Finite Sequence of Numbers 341
 B.4 Fourier Series Models for Time Series Data 342
 B.A.1 The Spectrum and the Periodogram of f(t) 343

Appendix C Network Survivability and Borel's Paradox 345
 C.1 Preamble 345
 C.2 Re-assessing Testimonies of Experts Who have Vanished 345
 C.3 The Paradox in Two Dimensions 346
 C.4 The Paradox in Network Survivability Assessment 347

Bibliography 349

Index 365