Contents

Preface xiii
Symbols xvii
Greek Alphabet xx

1 Tension, Compression, and Shear 1

1.1 Introduction to Mechanics of Materials 1
1.2 Normal Stress and Strain 3
1.3 Mechanical Properties of Materials 10
1.4 Elasticity, Plasticity, and Creep 20
1.5 Linear Elasticity, Hooke’s Law, and Poisson’s Ratio 23
1.6 Shear Stress and Strain 28
1.7 Allowable Stresses and Allowable Loads 39
1.8 Design for Axial Loads and Direct Shear 44
Problems 49

2 Axially Loaded Members 67

2.1 Introduction 67
2.2 Changes in Lengths of Axially Loaded Members 68
2.3 Changes in Lengths Under Nonuniform Conditions 77
2.4 Statically Indeterminate Structures 84
2.5 Thermal Effects, Misfits, and Prestrains 93
2.6 Stresses on Inclined Sections 105
2.7 Strain Energy 116
*2.8 Impact Loading 128
*2.9 Repeated Loading and Fatigue 136
*2.10 Stress Concentrations 138
*2.11 Nonlinear Behavior 144
*2.12 Elastoplastic Analysis 149
Problems 155

*Stars denote specialized and advanced topics.
3 Torsion

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>3.2</td>
<td>Torsional Deformations of a Circular Bar</td>
<td>186</td>
</tr>
<tr>
<td>3.3</td>
<td>Circular Bars of Linearly Elastic Materials</td>
<td>189</td>
</tr>
<tr>
<td>3.4</td>
<td>Nonuniform Torsion</td>
<td>202</td>
</tr>
<tr>
<td>3.5</td>
<td>Stresses and Strains in Pure Shear</td>
<td>209</td>
</tr>
<tr>
<td>3.6</td>
<td>Relationship Between Moduli of Elasticity E and G</td>
<td>216</td>
</tr>
<tr>
<td>3.7</td>
<td>Transmission of Power by Circular Shafts</td>
<td>217</td>
</tr>
<tr>
<td>3.8</td>
<td>Statically Indeterminate Torsional Members</td>
<td>222</td>
</tr>
<tr>
<td>3.9</td>
<td>Strain Energy in Torsion and Pure Shear</td>
<td>226</td>
</tr>
<tr>
<td>3.10</td>
<td>Thin-Walled Tubes</td>
<td>234</td>
</tr>
<tr>
<td>*3.11</td>
<td>Stress Concentrations in Torsion</td>
<td>243</td>
</tr>
</tbody>
</table>

Problems 245

4 Shear Forces and Bending Moments

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>264</td>
</tr>
<tr>
<td>4.2</td>
<td>Types of Beams, Loads, and Reactions</td>
<td>264</td>
</tr>
<tr>
<td>4.3</td>
<td>Shear Forces and Bending Moments</td>
<td>269</td>
</tr>
<tr>
<td>4.4</td>
<td>Relationships Between Loads, Shear Forces, and Bending Moments</td>
<td>276</td>
</tr>
<tr>
<td>4.5</td>
<td>Shear-Force and Bending-Moment Diagrams</td>
<td>281</td>
</tr>
</tbody>
</table>

Problems 292

5 Stresses in Beams (Basic Topics)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>300</td>
</tr>
<tr>
<td>5.2</td>
<td>Pure Bending and Nonuniform Bending</td>
<td>301</td>
</tr>
<tr>
<td>5.3</td>
<td>Curvature of a Beam</td>
<td>302</td>
</tr>
<tr>
<td>5.4</td>
<td>Longitudinal Strains in Beams</td>
<td>304</td>
</tr>
<tr>
<td>5.5</td>
<td>Normal Stresses in Beams (Linearly Elastic Materials)</td>
<td>309</td>
</tr>
<tr>
<td>5.6</td>
<td>Design of Beams for Bending Stresses</td>
<td>321</td>
</tr>
<tr>
<td>5.7</td>
<td>Nonprismatic Beams</td>
<td>330</td>
</tr>
<tr>
<td>5.8</td>
<td>Shear Stresses in Beams of Rectangular Cross Section</td>
<td>334</td>
</tr>
<tr>
<td>5.9</td>
<td>Shear Stresses in Beams of Circular Cross Section</td>
<td>343</td>
</tr>
<tr>
<td>5.10</td>
<td>Shear Stresses in the Webs of Beams with Flanges</td>
<td>346</td>
</tr>
<tr>
<td>*5.11</td>
<td>Built-Up Beams and Shear Flow</td>
<td>354</td>
</tr>
<tr>
<td>*5.12</td>
<td>Beams with Axial Loads</td>
<td>358</td>
</tr>
<tr>
<td>*5.13</td>
<td>Stress Concentrations in Bending</td>
<td>364</td>
</tr>
</tbody>
</table>

Problems 366
6 Stresses in Beams (Advanced Topics) 393

6.1 Introduction 393
6.2 Composite Beams 393
6.3 Transformed-Section Method 403
6.4 Doubly Symmetric Beams with Inclined Loads 409
6.5 Bending of Unsymmetric Beams 416
6.6 The Shear-Center Concept 421
6.7 Shear Stresses in Beams of Thin-Walled Open Cross Sections 424
6.8 Shear Stresses in Wide-Flange Beams 427
6.9 Shear Centers of Thin-Walled Open Sections 431
6.10 Elastoplastic Bending 440

Problems 450

7 Analysis of Stress and Strain 464

7.1 Introduction 464
7.2 Plane Stress 465
7.3 Principal Stresses and Maximum Shear Stresses 474
7.4 Mohr’s Circle for Plane Stress 483
7.5 Hooke’s Law for Plane Stress 500
7.6 Triaxial Stress 505
7.7 Plane Strain 510

Problems 525

8 Applications of Plane Stress (Pressure Vessels, Beams, and Combined Loadings) 541

8.1 Introduction 541
8.2 Spherical Pressure Vessels 541
8.3 Cylindrical Pressure Vessels 548
8.4 Maximum Stresses in Beams 556
8.5 Combined Loadings 566

Problems 583
9 Deflections of Beams 594

9.1 Introduction 594
9.2 Differential Equations of the Deflection Curve 594
9.3 Deflections by Integration of the Bending-Moment
 Equation 600
9.4 Deflections by Integration of the Shear-Force and Load
 Equations 611
9.5 Method of Superposition 617
9.6 Moment-Area Method 626
9.7 Nonprismatic Beams 636
9.8 Strain Energy of Bending 641
*9.9 Castigliano's Theorem 647
*9.10 Deflections Produced by Impact 659
*9.11 Discontinuity Functions 661
*9.12 Use of Discontinuity Functions in Determining Beam
 Deflections 673
*9.13 Temperature Effects 685

Problems 687

10 Statically Indeterminate Beams 707

10.1 Introduction 707
10.2 Types of Statically Indeterminate Beams 708
10.3 Analysis by the Differential Equations of the Deflection
 Curve 711
10.4 Method of Superposition 718
*10.5 Temperature Effects 731
*10.6 Longitudinal Displacements at the Ends of a Beam 734

Problems 738
11 Columns 748

11.1 Introduction 748
11.2 Buckling and Stability 749
11.3 Columns with Pinned Ends 752
11.4 Columns with Other Support Conditions 765
11.5 Columns with Eccentric Axial Loads 776
11.6 The Secant Formula for Columns 781
11.7 Elastic and Inelastic Column Behavior 787
11.8 Inelastic Buckling 789
11.9 Design Formulas for Columns 795

Problems 813

12 Review of Centroids and Moments of Inertia 828

12.1 Introduction 828
12.2 Centroids of Plane Areas 829
12.3 Centroids of Composite Areas 832
12.4 Moments of Inertia of Plane Areas 835
12.5 Parallel-Axis Theorem for Moments of Inertia 838
12.6 Polar Moments of Inertia 841
12.7 Products of Inertia 843
12.8 Rotation of Axes 846
12.9 Principal Axes and Principal Moments of Inertia 848

Problems 852

References and Historical Notes 859

Appendix A Systems of Units and Conversion Factors 867

A.1 Systems of Units 867
A.2 SI Units 868
A.3 U.S. Customary Units 875
A.4 Temperature Units 877
A.5 Conversions Between Units 878
Appendix B Problem Solving 881
 B.1 Types of Problems 881
 B.2 Steps in Solving Problems 882
 B.3 Dimensional Homogeneity 883
 B.4 Significant Digits 884
 B.5 Rounding of Numbers 886

Appendix C Mathematical Formulas 887
Appendix D Properties of Plane Areas 891
Appendix E Properties of Structural-Steel Shapes 897
Appendix F Properties of Structural Lumber 903
Appendix G Deflections and Slopes of Beams 905
Appendix H Properties of Materials 911

Answers to Problems 917
Name Index 933
Subject Index 935