CONTENTS

Preface ix
List of Abbreviations xi

1 Introduction 1

1.1 Werner Complexes, 2
1.2 The Trans Effect, 6
1.3 Soft Versus Hard Ligands, 8
1.4 The Crystal Field, 9
1.5 The Ligand Field, 14
1.6 Back Bonding, 15
1.7 Electroneutrality, 19
1.8 Types of Ligand, 21

2 General Properties of Organometallic Complexes 29

2.1 The 18-Electron Rule, 30
2.2 Limitations of the 18-Electron Rule, 35
2.3 Electron Counting in Reactions, 37
2.4 Oxidation State, 39
2.5 Coordination Number and Geometry, 41
2.6 Effects of Complexation, 45
2.7 Differences between Metals, 47
2.8 Outer-Sphere Coordination, 49
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Metal Alkyls, Aryls, and Hydrides and Related σ-Bonded Ligands</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>Transition Metal Alkyls and Aryls, 53</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Related σ-Bonded Ligands, 68</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Metal Hydride Complexes, 72</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>σ Complexes, 75</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Bond Strengths for Classical σ-Bonding Ligands, 79</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Carbonyls, Phosphine Complexes, and Ligand Substitution Reactions</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Metal Complexes of CO, RNC, CS, and NO, 87</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Phosphines and Related Ligands, 99</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Dissociative Substitution, 104</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Associative Mechanism, 109</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Redox Effects, the I Mechanism, and Rearrangements in Substitution, 112</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Photochemical Substitution, 115</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Steric and Solvent Effects in Substitution, 118</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Complexes of π-Bound Ligands</td>
<td>125</td>
</tr>
<tr>
<td>5.1</td>
<td>Alkene and Alkyne Complexes, 125</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Allyl Complexes, 131</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Diene Complexes, 136</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Cyclopentadienyl Complexes, 140</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Arenes and Other Alicyclic Ligands, 148</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Metalacycles and Isoelectronic and Isolobal Replacement, 152</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Stability of Polyene and Polyenyl Complexes, 154</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oxidative Addition and Reductive Elimination</td>
<td>159</td>
</tr>
<tr>
<td>6.1</td>
<td>Concerted Additions, 162</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>S_N2 Reactions, 165</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Radical Mechanisms, 166</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Ionic Mechanisms, 169</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Reductive Elimination, 170</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>σ-Bond Metathesis, 176</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Oxidative Coupling and Reductive Cleavage, 177</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Insertion and Elimination</td>
<td>183</td>
</tr>
<tr>
<td>7.1</td>
<td>Reactions Involving CO, 185</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Insertions Involving Alkenes, 191</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Other Insertions, 197</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>α, β, γ, and δ Elimination, 199</td>
<td></td>
</tr>
</tbody>
</table>
8 **Nucleophilic and Electrophilic Addition and Abstraction** 207
8.1 Nucleophilic Addition to CO, 210
8.2 Nucleophilic Addition to Polyene and Polyenyl Ligands, 213
8.3 Nucleophilic Abstraction in Hydrides, Alkyls, and Acyls, 221
8.4 Electrophilic Addition, 222
8.5 Electrophilic Abstraction of Alkyl Groups, 226
8.6 Single-Electron Transfer Pathways, 228
8.7 Reactions of Organic Free Radicals with Metal Complexes, 229

9 **Homogeneous Catalysis** 235
9.1 Alkene Isomerization, 239
9.2 Alkene Hydrogenation, 241
9.3 Alkene Hydroformylation, 254
9.4 Hydrocyanation of Butadiene, 257
9.5 Alkene Hydrosilation and Hydroboration, 261
9.6 Coupling Reactions, 263
9.7 Surface and Supported Organometallic Catalysis, 266

10 **Physical Methods in Organometallic Chemistry** 275
10.1 Isolation, 275
10.2 1H NMR Spectroscopy, 276
10.3 13C NMR Spectroscopy, 281
10.4 31P NMR Spectroscopy, 282
10.5 Dynamic NMR, 284
10.6 Spin Saturation Transfer, 288
10.7 T_1 and the Nuclear Overhauser Effect, 290
10.8 Isotopic Perturbation of Resonance, 294
10.9 IR Spectroscopy, 297
10.10 Crystallography, 300
10.11 Other Methods, 302

11 **Metal–Ligand Multiple Bonds** 309
11.1 Carbenes, 309
11.2 Carbynes, 325
11.3 Bridging Carbenes and Carbynes, 327
11.4 N-Heterocyclic Carbenes, 330
11.5 Multiple Bonds to Heteroatoms, 334

12 **Applications of Organometallic Chemistry** 343
12.1 Alkene Metathesis, 343
12.2 Dimerization, Oligomerization, and Polymerization of Alkenes, 350
12.3 Activation of CO and CO₂, 360
12.4 CH Activation, 364
12.5 Organometallic Materials and Polymers, 371

13 Clusters and the Metal–Metal Bond
13.1 Structures, 380
13.2 The Isolobal Analogy, 393
13.3 Synthesis, 397
13.4 Reactions, 399
13.5 Giant Clusters and Nanoparticles, 407
13.6 Giant Molecules, 411

14 Applications to Organic Synthesis
14.1 Metal Alkyls Aryls, and Hydrides, 418
14.2 Reduction, Oxidation, and Control of Stereochemistry, 429
14.3 Protection and Deprotection, 435
14.4 Reductive Elimination and Coupling Reactions, 438
14.5 Insertion Reactions, 443
14.6 Nucleophilic Attack on a Ligand, 447
14.7 Heterocycles, 454
14.8 More Complex Molecules, 455

15 Paramagnetic, High-Oxidation-State, and High-Coordination-Number Complexes
15.1 Magnetism and Spin States, 464
15.2 Polyalkyls, 471
15.3 Polyhydrides, 476
15.4 Cyclopentadienyl Complexes, 479
15.5 f-Block Complexes, 481

16 Bioorganometallic Chemistry
16.1 Introduction, 492
16.2 Coenzyme B₁₂, 497
16.3 Nitrogen Fixation, 503
16.4 Nickel Enzymes, 509
16.5 Biomedical Applications, 517

Useful Texts on Allied Topics

Major Reaction Types

Solutions to Problems

Index