3.1 The Concept of cis and trans Addition
3.2 Vocabulary of Stereochemistry and Stereoselective Synthesis I
3.2.1 Isomerism, Diastereomers/Enantiomers, Chirality
3.2.2 Chemoselectivity, Diastereoselectivity/Enantioselectivity, Stereoisomerism/Stereorecognition
3.3 Additions That Take Place Diastereoselectivity as cis Additions
3.3.1 A Cycloaddition Forming Three-Membered Rings
3.3.2 Additions to C==C Double Bonds That Are Related to Cycloadditions and Form Three-Membered Rings, Too
3.3.3 cis-Hydration of Olefins via the Hydroboration/Oxidation/Hydrolysis Reaction Sequence
3.3.4 Heterogeneously Catalyzed Hydrogenation
3.4 Enantioselective cis Additions to C==C Double Bonds
3.4.1 Vocabulary of Stereochemistry and Stereoselective Synthesis II: Topicity, Asymmetric Synthesis
3.4.2 Asymmetric Hydroboration of Achiral Olefins

3.4.3 Thought Experiment I on the Hydroboration of Chiral Olefins with Chiral Boranes: Mutual Kinetic Resolution

3.4.4 Thought Experiments II and III on the Hydroboration of Chiral Olefins with Chiral Boranes: Reagent Control of Diastereoselectivity, Matched/Mismatched Pairs, Double Stereodifferentiation

3.4.5 Thought Experiment IV on the Hydroboration of Chiral Olefins with Chiral Dialkylboranes: Kinetic Resolution

3.4.6 Catalytic Asymmetric Synthesis: Sharpless Oxidations of Allyl Alcohols

3.5 Additions That Take Place Diastereoselectively as trans Additions (Additions via Onium Intermediates)

3.5.1 Addition of Bromine

3.5.2 The Formation of Halohydrins; Halolactonization and Haloetherification

3.5.3 Solvomercuration of Olefins: Hydration of C=C Double Bonds through Subsequent Reduction

3.6 Additions That Take Place or Can Take Place without Stereocontrol Depending on the Mechanism

3.6.1 Additions via Carbenium Ion Intermediates

3.6.2 Additions via “Carbanion” Intermediates

References

4 β-Eliminations

4.1 Concepts of Elimination Reactions

4.1.1 The Concept of αβ- and 1,n-Elimination

4.1.2 The Terms syn- and anti-Elimination

4.1.3 When Are Stereogenic syn- and anti-Selective Eliminations Stereoselective?

4.1.4 Formation of Regioisomeric Olefins by β-Elimination: Saytzeff and Hofmann Product(s)

4.1.5 The Synthetic Value of Het¹/Het² in Comparison to H/Het Eliminations

4.2 β-Eliminations of H/Het via Cyclic Transition States

4.3 β-Eliminations of H/Het via Acyclic Transition States: The Mechanistic Alternatives

4.4 E2 Eliminations of H/Het and the E2/S_N2 Competition

4.4.1 Substrate Effects on the E2/S_N2 Competition

4.4.2 Base Effects on the E2/S_N2 Competition

4.4.3 A Stereoelectronic Effect on the E2/S_N2 Competition

4.4.4 The Regioselectivity of E2 Eliminations

4.4.5 One-Pot Conversion of an Alcohol to an Olefin
5

Substitution Reactions on Aromatic Compounds

5.1 Electrophilic Aromatic Substitutions via Wheland Complexes ("Ar-S_E Reactions")
5.1.1 Mechanism: Substitution of H^- vs ipso-Substitution
5.1.2 Thermodynamic Aspects of Ar-S_E Reactions
5.1.3 Kinetic Aspects of Ar-S_E Reactions: Reactivity and Regioselectivity in Reactions of Electrophiles with Substituted Benzenes

5.2 Ar-S_E Reactions via Wheland Complexes: Individual Reactions
5.2.1 Ar—Hal Bond Formation by Ar-S_E Reaction
5.2.2 Ar—SO_2H Bond Formation by Ar-S_E Reaction
5.2.3 Ar—NO_2 Bond Formation by Ar-S_E Reaction
5.2.4 Ar—N=N Bond Formation by Ar-S_E Reaction
5.2.5 Ar—Alkyl Bond Formations by Ar-S_E Reaction
5.2.6 Ar—C(OH) Bond Formation by Ar-S_E Reactions and Associated Secondary Reactions
5.2.7 Ar—C(=O) Bond Formation by Ar-S_E Reaction
5.2.8 Ar—C(=O)H Bond Formation through Ar-S_E Reaction

5.3 Electrophilic Substitution Reactions on Metallated Aromatic Compounds
5.3.1 Electrophilic Substitution Reactions of ortho-Lithiated Benzene and Naphthalene Derivatives
5.3.2 Electrophilic Substitution Reactions in Aryl Grignard and Aryllithium Compounds That Are Accessible from Aryl Halides 203

5.3.3 Electrophilic Substitutions on Arylboronic Acids and Arylboronic Esters 206

5.4 Nucleophilic Substitution Reactions in Aryldiazonium Salts 207

5.5 Nucleophilic Substitution Reactions via Meisenheimer Complexes 211

5.5.1 Mechanism 211

5.5.2 Examples of Reactions of Preparative Interest 213

5.5.3 A Special Mechanistic Case: Reactions of Aryl Sulfonates with NaOH/KOH in a Melt 215

5.6 Nucleophilic Aromatic Substitution via Arynes, cine Substitution 216

References 217

6 Nucleophilic Substitution Reactions on the Carboxyl Carbon (Except through Enolates) 221

6.1 C=O-Containing Substrates and Their Reactions with Nucleophiles 221

6.2 Mechanisms, Rate Laws, and Rate of Nucleophilic Substitution Reactions at the Carboxyl Carbon 224

6.2.1 Mechanism and Rate Laws of \(S_N \) Reactions on the Carboxyl Carbon 224

6.2.2 \(S_N \) Reactions on the Carboxyl Carbon: The Influence of Resonance Stabilization of the Attacked C=O Double Bond on the Reactivity of the Acylating Agent 230

6.2.3 \(S_N \) Reactions on the Carboxyl Carbon: The Influence of the Stabilization of the Tetrahedral Intermediate on the Reactivity 234

6.3 Activation of Carboxylic Acids and of Carboxylic Acid Derivatives 236

6.3.1 Activation of Carboxylic Acids and Carboxylic Acid Derivatives in Equilibrium Reactions 237

6.3.2 Conversion of Carboxylic Acids into Isolable Acylating Agents 238

6.3.3 Complete \(in \) \(S_i \) \(tu \) Activation of Carboxylic Acids 240

6.4 Selected \(S_N \) Reactions of Heteroatom Nucleophiles on the Carboxyl Carbon 244

6.4.1 Hydrolysis of Esters 246

6.4.2 Lactone Formation from Hydroxycarboxylic Acids 250

6.4.3 Forming Peptide Bonds 254

6.4.4 \(S_N \) Reactions of Heteroatom Nucleophiles with Carbonic Acid Derivatives 256

6.5 \(S_N \) Reactions of Hydride Donors, Organometallics, and Heteroatom-Stabilized "Carbanions" on the Carboxyl Carbon 260

6.5.1 When Do Pure Acylations Succeed, and When Are Alcohols Produced? 260
7 Additions of Heteroatom Nucleophiles to Heterocumulenes.
Additions of Heteroatom Nucleophiles to Carbonyl Compounds and Follow-up Reactions 271

7.1 Additions of Heteroatom Nucleophiles to Heterocumulenes 271
7.1.1 Mechanism of the Addition of Heteroatom Nucleophiles to Heterocumulenes 271
7.1.2 Examples of the Addition of Heteroatom Nucleophiles to Heterocumulenes 272

7.2 Additions of Heteroatom Nucleophiles to Carbonyl Compounds 279
7.2.1 On the Equilibrium Position of Addition Reactions of Heteroatom Nucleophiles to Carbonyl Compounds 279
7.2.2 Hemiacetal Formation 281
7.2.3 Oligomerization/Polymerization of Carbonyl Compounds 286

7.3 Addition of Heteroatom Nucleophiles to Carbonyl Compounds in Combination with Subsequent $S_{N}1$ Reactions: Acetalizations 288
7.3.1 Mechanism 288
7.3.2 Formation of O,O-Acetals 290
7.3.3 Formation of S,S-Acetals 295
7.3.4 Formation of N,N-Acetals 297

7.4 Addition of Nitrogen Nucleophiles to Carbonyl Compounds in Combination with Subsequent E1 Eliminations: Condensation Reactions of Nitrogen Nucleophiles with Carbonyl Compounds 299
References 303

8 Addition of Hydride Donors and Organometallic Compounds to Carbonyl Compounds 305

8.1 Suitable Hydride Donors and Organometallic Compounds and a Survey of the Structure of Organometallic Compounds 305
8.2 Chemoselectivity of the Addition of Hydride Donors to Carbonyl Compounds 307
8.3 Diastereoselectivity of the Addition of Hydride Donors to Carbonyl Compounds 309
8.3.1 Diastereoselectivity of the Addition of Hydride Donors to Cyclic Ketones 310
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2</td>
<td>Diastereoselectivity of the Addition of Hydride Donors to α-Chiral Acyclic Carbonyl Compounds</td>
<td>313</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Diastereoselectivity of the Addition of Hydride Donors to β-Chiral Acyclic Carbonyl Compounds</td>
<td>322</td>
</tr>
<tr>
<td>8.4</td>
<td>Enantioselective Addition of Hydride Donors to Carbonyl Compounds</td>
<td>323</td>
</tr>
<tr>
<td>8.5</td>
<td>Addition of Organometallic Compounds to Carbonyl Compounds</td>
<td>327</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Simple Addition Reactions of Organometallic Compounds</td>
<td>328</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Enantioselective Addition of Organozinc Compounds to Carbonyl Compounds: Chiral Amplification</td>
<td>333</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Diastereoselective Addition of Organometallic Compounds to Carbonyl Compounds</td>
<td>335</td>
</tr>
<tr>
<td>8.6</td>
<td>1,4-Additions of Organometallic Compounds to α,β-Unsaturated Ketones</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>342</td>
</tr>
<tr>
<td>9</td>
<td>Reaction of Ylides with Saturated or α,β-Unsaturated Carbonyl Compounds</td>
<td>347</td>
</tr>
<tr>
<td>9.1</td>
<td>Ylides/Ylenes</td>
<td>347</td>
</tr>
<tr>
<td>9.2</td>
<td>Reactions of S Ylides with Saturated Carbonyl Compounds or with Michael Acceptors: Three-Membered Ring Formation</td>
<td>349</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Mechanism for the Formation of Cyclopropanes and Epoxides</td>
<td>349</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Stereoselectivity and Regioselectivity of Three-Membered Ring Formation from S Ylides</td>
<td>351</td>
</tr>
<tr>
<td>9.3</td>
<td>Condensation of P Ylides with Carbonyl Compounds: Wittig Reaction</td>
<td>353</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Nomenclature and Preparation of P Ylides</td>
<td>354</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Mechanism of the Wittig Reaction</td>
<td>355</td>
</tr>
<tr>
<td>9.4</td>
<td>Horner–Wadsworth–Emmons Reaction</td>
<td>360</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Horner–Wadsworth–Emmons Reactions with Achiral Substrates</td>
<td>361</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Horner–Wadsworth–Emmons Reactions between Chiral Substrates: A Potpourri of Stereochemical Specialties</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>372</td>
</tr>
<tr>
<td>10</td>
<td>Chemistry of the Alkaline Earth Metal Enolates</td>
<td>373</td>
</tr>
<tr>
<td>10.1</td>
<td>Basic Considerations</td>
<td>373</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Notation and Structure of Enolates</td>
<td>373</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Preparation of Enolates by Deprotonation</td>
<td>377</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Other Methods for the Generation of Enolates</td>
<td>386</td>
</tr>
</tbody>
</table>
10.1.4 Survey of Reactions between Electrophiles and Enolates and the Issue of Ambidoselectivity 388

10.2 Alkylation of Quantitatively Prepared Enolates and Aza-Enolates; Chain-Elongating Syntheses of Carbonyl Compounds and Carboxylic Acid Derivatives 391
10.2.1 Chain-Elongating Syntheses of Carbonyl Compounds 391
10.2.2 Chain-Elongating Syntheses of Carboxylic Acid Derivatives 400

10.3 Hydroxyalkylation of Enolates with Carbonyl Compounds ("Aldol Addition"): Synthesis of β-Hydroxyketones and β-Hydroxyesters 406
10.3.1 Driving Force of Aldol Additions and Survey of Reaction Products 406
10.3.2 Stereocontrol 408

10.4 Condensation of Enolates with Carbonyl Compounds: Synthesis of Michael Acceptors 414
10.4.1 Aldol Condensations 414
10.4.2 Knoevenagel Reaction 418
10.4.3 A Knoevenagel Reaction "with a Twist" 419

10.5 Acylation of Enolates 422
10.5.1 Acylation of Ester Enolates 422
10.5.2 Acylation of Ketone Enolates 425

10.6 Michael Additions of Enolates 428
10.6.1 Simple Michael Additions 428
10.6.2 Tandem Reactions Consisting of Michael Addition and Consecutive Reactions 430

References 432

11 Rearrangements 435

11.1 Nomenclature of Sigmatropic Shifts 435
11.2 Molecular Origins for the Occurrence of [1,2]-Rearrangements 436
11.3 [1,2]-Rearrangements in Species with a Valence Electron Sextet 438
11.3.1 [1,1]-Rearrangements of Carbenium Ions 438
11.3.2 [1,2]-Rearrangements in Carbenes or Carbeneoids 453
11.4 [1,2]-Rearrangements without the Occurrence of a Sextet Intermediate 458
11.4.1 Hydroperoxide Rearrangements 459
11.4.2 Baeyer-Villiger Rearrangements 459
11.4.3 Oxidation of Organoborane Compounds 462
11.4.4 Beckmann Rearrangement 464
11.4.5 Curtius Rearrangement 464

11.5 Claisen Rearrangement 467
11.5.1 Classical Claisen Rearrangement 467
11.5.2 Claisen-Ireland Rearrangements 468

References 474
12 Thermal Cycloadditions

12.1 Driving Force and Feasibility of One-Step [2 + 4]- and [2 + 2]-Cycloadditions 477
12.2 Transition State Structures of Selected One-Step [2 + 4]- and [2 + 2]-Cycloadditions 478
 12.2.1 Stereostructure of the Transition States of One-Step [2 + 4]-Cycloadditions 478
 12.2.2 Frontier Orbital Interactions in the Transition States of One-Step [2 + 4]-Cycloadditions 480
 12.2.3 Frontier Orbital Interactions in the Transition States of the Unknown One-Step Cycloadditions of Alkenes or Alkynes to Alkenes 486
 12.2.4 Frontier Orbital Interactions in the Transition State of One-Step [2 + 2]-Cycloadditions Involving Ketenes 486

12.3 Diels–Alder Reactions 488
 12.3.1 Stereoselectivity of Diels–Alder Reactions 489
 12.3.2 Substituent Effects on Reaction Rates of Diels–Alder Reactions 493
 12.3.3 Orientation Selectivity of Diels–Alder Reactions 497
 12.3.4 Simple Diastereoselectivity of Diels–Alder Reactions 500

12.4 [2 + 2]-Cycloadditions with Dichloroketene 502

12.5 1,3-Dipolar Cycloadditions 504
 12.5.1 1,3-Dipoles 504
 12.5.2 Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions; Sustmann Classification 505
 12.5.3 1,3-Dipolar Cycloadditions of Diazoolkanes 507
 12.5.4 1,3-Dipolar Cycloadditions of Nitrile Oxides 510
 12.5.5 1,3-Dipolar Cycloadditions and 1,3-Dipolar Cycloreversions as Steps in the Ozonolysis of Alkenes 513
 12.5.6 A Tricky Reaction of Inorganic Azide 515

References 516

13 Transition Metal-Mediated Alkenylations, Arylations, and Alkynylation

13.1 Alkenylation and Arylation of Copper-Bound Organyl Groups 520
13.2 Alkenylation and Arylation of Grignard Compounds 522
13.3 Palladium-Catalyzed Alkenylation and Arylation of Organometallic Compounds 526
 13.3.1 A Prelude: Preparation of Haloalkenes and Alkenylboronic Acid Derivatives, Important Building Blocks for Palladium-Mediated C,C Couplings 526
13.3.2 Alkenylation and Arylation of Boron-Bound Groups
13.3.3 Alkenylation and Arylation of Zinc-Bound Functionalized Groups
13.3.4 Alkenylation and Arylation of Copper Acetylides
13.4 Alkynylation of Copper Acetylides
13.5 Heck Reactions
References

14 Oxidations and Reductions
14.1 Oxidation States of Organic Chemical Compounds, Oxidation Numbers in Organic Chemical Compounds, and Organic Chemical Redox Reactions
14.2 Cross-References to Redox Reactions Already Discussed in Chapters 1–13
14.3 Oxidations
14.3.1 Oxidations in the Series Alcohol → Aldehyde → Carboxylic Acid
14.3.2 Oxidative Cleavages
14.3.3 Oxidations at Heteroatoms
14.4 Reductions
14.4.1 Reductions \(R_{sp3} - X \rightarrow R_{sp3} - H \) or \(R_{sp3} - X \rightarrow R_{sp3} - M \)
14.4.2 One-Electron Reductions of Carbonyl Compounds and Esters; Reductive Coupling
14.4.3 Reductions of Carboxylic Acid Derivatives to Alcohols or Amines
14.4.4 Reductions of Carboxylic Acid Derivatives to Aldehydes
14.4.5 Reductions of Carbonyl Compounds to Alcohols
14.4.6 Reductions of Carbonyl Compounds to Hydrocarbons
14.4.7 Hydrogenation of Alkenes
14.4.8 Reductions of Aromatic Compounds and Alkynes
References

Index