Preface

1 Single period models
 Summary
 1.1 Some definitions from finance
 1.2 Pricing a forward
 1.3 The one-step binary model
 1.4 A ternary model
 1.5 A characterisation of no arbitrage
 1.6 The risk-neutral probability measure
 Exercises

2 Binomial trees and discrete parameter martingales
 Summary
 2.1 The multiperiod binary model
 2.2 American options
 2.3 Discrete parameter martingales and Markov processes
 2.4 Some important martingale theorems
 2.5 The Binomial Representation Theorem
 2.6 Overture to continuous models
 Exercises

3 Brownian motion
 Summary
 3.1 Definition of the process
 3.2 Lévy’s construction of Brownian motion
 3.3 The reflection principle and scaling
 3.4 Martingales in continuous time
 Exercises

4 Stochastic calculus
 Summary

Contents
4.1 Stock prices are not differentiable 72
4.2 Stochastic integration 74
4.3 Itô’s formula 85
4.4 Integration by parts and a stochastic Fubini Theorem 93
4.5 The Girsanov Theorem 96
4.6 The Brownian Martingale Representation Theorem 100
4.7 Why geometric Brownian motion? 102
4.8 The Feynman–Kac representation 102

Exercises 107

5 The Black–Scholes model 112

Summary 112
5.1 The basic Black–Scholes model 112
5.2 Black–Scholes price and hedge for European options 118
5.3 Foreign exchange 122
5.4 Dividends 126
5.5 Bonds 131
5.6 Market price of risk 132

Exercises 134

6 Different payoffs 139

Summary 139
6.1 European options with discontinuous payoffs 139
6.2 Multistage options 141
6.3 Lookbacks and barriers 144
6.4 Asian options 149
6.5 American options 150

Exercises 154

7 Bigger models 159

Summary 159
7.1 General stock model 160
7.2 Multiple stock models 163
7.3 Asset prices with jumps 175
7.4 Model error 181

Exercises 185

Bibliography 189
Notation 191
Index 193