CONTENTS

Foreword v
Preface vii

1. BONDING IN COORDINATION COMPOUNDS 1

Theories of Bonding 7

[I] Valence Bond Theory (VBT) 8

Six Coordinate Complexes 8

Outer Orbital Octahedral Complexes 8

Inner Orbital Octahedral Complexes 10

Five Coordinate Complexes 11

Four Coordinate Complexes 12

Strengths and Shortcomings of the Valence Bond Approach 13

[II] Crystal Field Theory (CFT) 15

d-orbitals 16

Octahedral Complexes 17

Consequences of Crystal Field Splitting 18

Colour 18

High-spin/ Low-spin Complexes 22

Crystal Field Stabilization Energy (CFSE) 25

Magnetic properties: Diamagnetism/ Paramagnetism 27

Tetragonal distortion in octahedral complexes
(Jahn-Teller distortion) 29

Square Planar Complexes 34
Tetrahedral Geometry 35
Factors that Affect the Magnitude of 10 Dq 37
Octahedral vs Tetrahedral Coordination 39
Experimental Observations 40
Lattice energy 40
Hydration energy 42
Ionic radii in complex ions 43

[III] Molecular Orbital Theory (MOT) 46
Construction of a Molecular Orbital Energy Level 
Diagram for an Octahedral Complex with no π-Bonding 48
Octahedral Complexes with π-Bonding 52
Tetrahedral and Square Planar Complexes 56

2. STRUCTURE OF COORDINATION COMPOUNDS 61
Coordination Compounds 61
Ligands 62
Monodentate Ligands 62
Polydentate Ligands 62
Bidentate Ligands 62
Tridentate Ligands 64
Tetradentate Ligands 64
Pentadentate and Hexadentate Ligands 64

Shapes 65

3. NOMENCLATURE OF COORDINATION COMPOUNDS 67
Names for Mononuclear Coordination Compounds with 
Monodentate Ligands 68
Formulae for Mononuclear Coordination Compounds with 
Monodentate Ligands 71

Worked Examples 77
Study Questions 82
References 85
Index 87