Table of Contents

Note to the Reader
Preface

CHAPTER 1 CONCRETE BASICS

1.1 INTRODUCTION
1.2 CONCRETE AS A BUILDING MATERIAL
1.2.1 A Historical Overview
1.2.2 Concrete
1.2.3 Reinforced Concrete
1.2.4 Prestressed Concrete

1.3 REINFORCED CONCRETE BUILDINGS: STRUCTURAL COMPONENTS AND SYSTEMS
1.3.1 Structural Components
1.3.2 Structural Systems
1.3.3 How Loads Flow Through a Building

1.4 DESIGN OF REINFORCED CONCRETE STRUCTURES
1.4.1 Design Considerations
1.4.2 Design Process

1.5 CONSTRUCTION OF REINFORCED CONCRETE STRUCTURES
1.5.1 Construction Process
1.5.2 Construction Methods

1.6 CANADIAN DESIGN CODES AND STANDARDS FOR CONCRETE STRUCTURES

1.7 LOADS
1.7.1 Types of Loads
1.7.2 Dead Load
1.7.3 Live Load
1.7.4 Snow Load
1.7.5 Wind Load
1.7.6 Earthquake Load
1.7.7 Practical Considerations Related to Load Calculations

1.8 THE LIMIT STATES DESIGN METHOD
1.8.1 Limit States
1.8.2 Ultimate Limit States
1.8.3 Serviceability Limit States
1.8.4 Fire Resistance
1.8.5 Durability
1.9 MAJOR REVISIONS IN NBC 2005 RELATED TO STRUCTURAL DESIGN 32

1.10 ACCURACY IN DESIGN AND CONSTRUCTION 33
1.10.1 Research Studies Versus Real-Life Design Applications 33
1.10.2 Accuracy of Calculations 33

1.11 USE OF COMPUTER-AIDED DESIGN TOOLS 35
Summary and Review — Concrete Basics 36
Problems 39

CHAPTER 2 MATERIALS 41

2.1 INTRODUCTION 41

2.2 CONCRETE MATERIALS AND PRODUCTION 42
2.2.1 Portland Cement and Supplementary Materials 42
2.2.2 Water and Water-Cement Ratio 43
2.2.3 Air 44
2.2.4 Aggregates 44
2.2.5 Admixtures 45
2.2.6 Concrete Mix Design and Fresh Concrete 46
2.2.7 Hardened Concrete 46

2.3 PROPERTIES OF HARDENED CONCRETE 48
2.3.1 Compressive Strength 48
2.3.2 Tensile Strength 49
2.3.3 Shear Strength 50
2.3.4 Modulus of Elasticity 50
2.3.5 Creep 53
2.3.6 Shrinkage 55
2.3.7 Temperature Effects 58
2.3.8 Mass Density 58
2.3.9 Poisson's Ratio 59

2.4 DURABILITY OF CONCRETE 59

2.5 FIRE-RESISTANCE REQUIREMENTS 61

2.6 REINFORCEMENT 62
2.6.1 Types of Reinforcement 62
2.6.2 Mechanical Properties of Steel 63
2.6.3 Deformed Bars 64
2.6.4 Welded Wire Fabric 66
Summary and Review — Materials 67
Problems 70

CHAPTER 3 FLEXURE: BEHAVIOUR OF BEAMS AND ONE-WAY SLABS 72

3.1 INTRODUCTION 72

3.2 TYPES OF FLEXURAL MEMBERS 73
TABLE OF CONTENTS

3.3 GENERAL ASSUMPTIONS RELATED TO FLEXURE IN REINFORCED CONCRETE BEAMS AND SLABS

- 3.3.1 Notation .. 75
- 3.3.2 Limit States Design Assumptions 76
- 3.3.3 Factored Material Strength 77
- 3.3.4 Equivalent Rectangular Stress Distribution in Concrete ... 78

3.4 BEHAVIOUR OF REINFORCED CONCRETE BEAMS IN FLEXURE

- 3.4.1 Unreinforced Beams ... 79
- 3.4.2 Reinforced Beams ... 80
- 3.4.3 Failure Modes Characteristic of Reinforced Concrete Flexural Members 83

3.5 MOMENT RESISTANCE OF RECTANGULAR BEAMS WITH TENSION STEEL ONLY

- 3.5.1 Properly Reinforced Beams (Steel-Controlled Failure) .. 87
- 3.5.2 Overreinforced Beams (Concrete-Controlled Failure) .. 90
- 3.5.3 Balanced Condition ... 95

3.6 FLEXURAL RESISTANCE OF ONE-WAY SLABS

- 3.6.1 One-Way and Two-Way Slabs 101
- 3.6.2 Moment Resistance of a One-Way Slab 103

3.7 T-BEAMS

- 3.7.1 Background .. 107
- 3.7.2 Flexural Resistance of T-Beams for Positive Bending .. 108
- 3.7.3 Flexural Resistance of T-Beams in Negative Bending .. 120

3.8 RECTANGULAR BEAMS WITH TENSION AND COMPRESSION REINFORCEMENT

- 3.8.1 Background .. 121
- 3.8.2 Flexural Resistance of Doubly Reinforced Rectangular Beams 122

Summary and Review — Flexure: Behaviour of Beams and One-Way Slabs

Problems ... 128

130

CHAPTER 4 SERVICEABILITY

4.1 INTRODUCTION ... 134

4.2 BEHAVIOUR OF REINFORCED CONCRETE FLEXURAL MEMBERS UNDER SERVICE LOADS .. 135

4.3 PROPERTIES OF REINFORCED CONCRETE FLEXURAL MEMBERS UNDER SERVICE LOADS .. 138

- 4.3.1 Flexural Stiffness ... 138
- 4.3.2 Moment of Inertia .. 140
- 4.3.3 Gross Moment of Inertia 140
- 4.3.4 Cracked Moment of Inertia 142
- 4.3.5 Effective Moment of Inertia 145
4.4 DEFLECTIONS IN REINFORCED CONCRETE FLEXURAL MEMBERS 146
 4.4.1 Background 146
 4.4.2 Immediate Deflections 147
 4.4.3 Long-Term Deflections 149

4.5 CSA A23.3 DEFLECTION CONTROL REQUIREMENTS 151
 4.5.1 Background 151
 4.5.2 Indirect Approach 151
 4.5.3 Allowable Deflections 153

4.6 DEFLECTION CALCULATION PROCEDURES 153
 4.6.1 Background 153
 4.6.2 Deflections in Simply Supported Flexural Members 155
 4.6.3 Deflections in Continuous Flexural Members 160

4.7 CAUSES OF CRACKING IN REINFORCED CONCRETE STRUCTURES 173
 4.7.1 Plastic Settlement 174
 4.7.2 Shrinkage 174
 4.7.3 Corrosion 175
 4.7.4 Weathering 176
 4.7.5 Structural Distress 176
 4.7.6 Poor Construction Practices 176
 4.7.7 Crack Width 177

4.8 CSA A23.3 CRACKING CONTROL REQUIREMENTS 177
 4.8.1 Skin Reinforcement — Beams and Slabs 181
 Summary and Review — Serviceability Problems 183

CHAPTER 5 FLEXURE: DESIGN OF BEAMS AND ONE-WAY SLABS 190

5.1 INTRODUCTION 190

5.2 GENERAL DESIGN REQUIREMENTS 191

5.3 DETAILING REQUIREMENTS 191
 5.3.1 Concrete Cover 191
 5.3.2 Bar Spacing Requirements 192
 5.3.3 Computation of the Effective Beam Depth Based on the Detailing Requirements 194

5.4 PRACTICAL GUIDELINES FOR THE DESIGN AND CONSTRUCTION OF BEAMS AND ONE-WAY SLABS 196
 5.4.1 Design Guidelines 196
 5.4.2 Construction Considerations and Practices 199

5.5 DESIGN PROCEDURES FOR RECTANGULAR BEAMS AND SLABS WITH TENSION STEEL ONLY 201
 5.5.1 Direct Procedure 202
 5.5.2 Iterative Procedure 205
TABLE OF CONTENTS

5.6 DESIGN OF RECTANGULAR BEAMS WITH TENSION STEEL ONLY
- 5.6.1 CSA A23.3 Flexural Design Provisions for Rectangular Beams with Tension Steel Only 208
- 5.6.2 Design of Rectangular Beams with Tension Steel Only: Summary and a Design Example 212

5.7 DESIGN OF ONE-WAY SLABS
- 5.7.1 CSA A23.3 Flexural Design Provisions for One-Way Slabs 220
- 5.7.2 Design of One-Way Slabs: Summary and a Design Example 222

5.8 DESIGN OF T-BEAMS
- 5.8.1 CSA A23.3 Flexural Design Provisions for T-Beams 230
- 5.8.2 Design of T-Beams: Summary and a Design Example 232

5.9 DESIGN OF RECTANGULAR BEAMS WITH TENSION AND COMPRESSION REINFORCEMENT
- 5.9.1 CSA A23.3 Flexural Design Provisions for Beams with Tension and Compression Reinforcement 242
- 5.9.2 Design of Rectangular Beams with Tension and Compression Reinforcement: Summary and a Design Example 243

 Summary and Review — Flexure: Design of Beams and One-Way Slabs Problems

CHAPTER 6 SHEAR DESIGN OF BEAMS AND ONE-WAY SLABS

6.1 INTRODUCTION

6.2 BEHAVIOUR OF UNCRACKED CONCRETE BEAMS

6.3 BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITHOUT SHEAR REINFORCEMENT
- 6.3.1 Failure Modes 264
- 6.3.2 Shear Resistance of Cracked Beams 268

6.4 BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH SHEAR REINFORCEMENT
- 6.4.1 Types of Shear Reinforcement 270
- 6.4.2 Effect of Shear Reinforcement 272
- 6.4.3 Truss Analogy for Concrete Beams Failing in Shear 273
- 6.4.4 Shear Resistance of Beams with Shear Reinforcement 275

6.5 SHEAR DESIGN ACCORDING TO CSA A23.3
- 6.5.1 General Design Philosophy 277
- 6.5.2 Simplified and General Methods for Shear Design 277
- 6.5.3 Major Revisions in CSA A23.3-04 278
- 6.5.4 CSA A23.3 Requirements related to the Simplified Method for Shear Design 278

6.6 SHEAR DESIGN CONSIDERATIONS

260

261

264

268

270

272

273

275

277

277

278

278

285
TABLE OF CONTENTS

6.7 SHEAR DESIGN OF REINFORCED CONCRETE BEAMS ACCORDING TO THE CSA A23.3 SIMPLIFIED METHOD: SUMMARY AND DESIGN EXAMPLES 288

6.8 SHEAR DESIGN OF SIMPLE ONE-WAY SLABS 303

6.9 DETAILING OF SHEAR REINFORCEMENT 305

6.10 SHEAR FRICITION (INTERFACE SHEAR TRANSFER) 306
 6.10.1 Background 306
 6.10.2 CSA A23.3 Design Requirements 308
 Summary and Review — Shear Design of Beams and One-Way Slabs 311
 Problems 312

CHAPTER 7 TORSION 316

7.1 INTRODUCTION 316

7.2 TORSIONAL EFFECTS 316

7.3 BEHAVIOUR OF CONCRETE BEAMS SUBJECTED TO TORSION 317

7.4 TORSIONAL RESISTANCE OF REINFORCED CONCRETE BEAMS 319
 7.4.1 Background 319
 7.4.2 Torsional Resistance of Concrete 320
 7.4.3 Ultimate Torsional Resistance of a Cracked Beam 321

7.5 COMBINED TORSION, SHEAR, AND FLEXURE LOADS 324
 7.5.1 Combined Shear and Torsion 324
 7.5.2 Combined Flexure and Torsion 325

7.6 CSA A23.3 REQUIREMENTS FOR THE SIMPLIFIED METHOD FOR TORSION DESIGN 327

7.7 DETAILING OF TORSIONAL REINFORCEMENT 329

7.8 TORSIONAL DESIGN CONSIDERATIONS 331

7.9 DESIGN FOR TORSION PER THE CSA A23.3 SIMPLIFIED METHOD: SUMMARY AND A DESIGN EXAMPLE 332
 Summary and Review — Torsion 341
 Problems 342

CHAPTER 8 COLUMNS 345

8.1 INTRODUCTION 345

8.2 TYPES OF REINFORCED CONCRETE COLUMNS 346

8.3 MAIN COMPONENTS OF A REINFORCED CONCRETE COLUMN 347
 8.3.1 Longitudinal Reinforcement 348
 8.3.2 Transverse Reinforcement 348
 8.3.3 Concrete Core 349
8.4 COLUMN LOADS: CONCENTRICALLY VERSUS ECCENTRICALLY LOADED COLUMNS

8.5 BEHAVIOUR OF REINFORCED CONCRETE SHORT COLUMNS

8.6 AXIAL AND FLEXURAL LOAD RESISTANCE OF REINFORCED CONCRETE COLUMNS

8.6.1 Basic CSA A23.3 Column Design Assumptions
8.6.2 Axial Load Resistance of a Concentrically Loaded Short Column
8.6.3 Axial and Flexural Resistance of Eccentrically Loaded Reinforced Concrete Short Columns
8.6.4 Column Load Resistance Corresponding to the Balanced Condition

8.7 COLUMN INTERACTION DIAGRAMS

8.7.1 Key Features
8.7.2 Development of a Column Interaction Diagram
8.7.3 Use of Column Interaction Diagrams in Column Design Applications

8.8 CSA A23.3 COLUMN DESIGN REQUIREMENTS

8.8.1 Reinforcement Requirements

8.9 PRACTICAL DESIGN GUIDELINES

8.10 A GENERAL COLUMN DESIGN PROCEDURE

8.11 STRUCTURAL DRAWINGS AND DETAILS FOR REINFORCED CONCRETE COLUMNS

8.12 INTRODUCTION TO SLENDER COLUMNS

8.12.1 Slenderness of Concrete Columns
8.12.2 Behaviour of Slender Columns—Instability Failures
8.12.3 When Slenderness Effects Should Be Considered
8.12.4 Analysis of Slender Columns in Nonway Frames

8.13 COLUMN LOADS IN MULTISTOREY BUILDINGS

8.13.1 Tributary Area
8.13.2 Live Load Reductions
Summary and Review — Columns Problems

CHAPTER 9 BOND AND ANCHORAGE OF REINFORCEMENT

9.1 INTRODUCTION

9.2 BOND IN REINFORCED CONCRETE FLEXURAL MEMBERS

9.3 DEVELOPMENT LENGTH OF STRAIGHT BARS

9.3.1 Background
9.3.2 Development Length of Straight Reinforcing Bars in Tension
9.3.3 Development Length of Straight Bars in Compression

9.4 STANDARD HOOKS IN TENSION
9.5 HOOKS FOR STIRRUPS AND TIES 427
9.6 BAR CUTOFFS IN SIMPLY SUPPORTED FLEXURAL MEMBERS 429
 9.6.1 Background 429
 9.6.2 Theoretical Point of Cutoff 429
 9.6.3 Bar Extensions 434
 9.6.4 Bent Bars 435
9.7 ANCHORAGE DESIGN FOR FLEXURAL REINFORCEMENT
ACCORDING TO CSA A23.3 435
 9.7.1 Revisions in CSA A23.3.04 435
 9.7.2 General Anchorage Requirement 436
 9.7.3 Actual Point of Cutoff 436
 9.7.4 Development of Continuing Reinforcement 437
 9.7.5 Development of Positive Moment Reinforcement at Supports 437
 9.7.6 Anchorage of Negative Moment Reinforcement into Supporting Members 437
 9.7.7 Development of Negative Moment Reinforcement at Inflection Points 438
 9.7.8 Development of Positive Moment Reinforcement at Zero Moment Locations 439
 9.7.9 Flexural Tension Side 442
9.8 CALCULATION OF BAR CUTOFF POINTS IN SIMPLY SUPPORTED FLEXURAL MEMBERS ACCORDING TO
THE CSA A23.3 REQUIREMENTS 444
9.9 SPLICES 451
 9.9.1 Background 451
 9.9.2 Tension Splines 452
 9.9.3 Compression Splines 454
 9.9.4 Column Splines 454
 Summary and Review — Bond and Anchorage of Reinforcement Problems 456
 Problems 459

CHAPTER 10 BEHAVIOUR AND ANALYSIS OF CONTINUOUS
BEAMS AND SLABS 462

10.1 INTRODUCTION 462
10.2 FUNDAMENTAL CONCEPTS OF CONTINUOUS
REINFORCED CONCRETE STRUCTURES 463
 10.2.1 Simple Versus Continuous Structures 463
 10.2.2 Stiffness Distribution in Continuous Structures 465
10.3 LOAD PATTERNS 469
10.4 SIMPLIFICATIONS IN THE ANALYSIS OF REINFORCED
CONCRETE FRAME STRUCTURES 476
 10.4.1 Actual Structure Versus Idealized Structural Model 476
 10.4.2 Frame Model 476
 10.4.3 Reduction of Bending Moments at the Supports 477
TABLE OF CONTENTS

10.5 ANALYSIS METHODS FOR CONTINUOUS REINFORCED CONCRETE STRUCTURES
10.6 APPROXIMATE FRAME ANALYSIS
10.7 BEHAVIOUR OF CRACKED CONTINUOUS REINFORCED CONCRETE FLEXURAL MEMBERS
10.8 ANALYSIS OF CRACKED CONTINUOUS REINFORCED CONCRETE FLEXURAL MEMBERS
10.9 MOMENT REDISTRIBUTION PROCESS ACCORDING TO CSA A23.3

CHAPTER 11 DESIGN OF CONTINUOUS BEAMS, SLABS, AND FLOOR SYSTEMS
11.1 INTRODUCTION
11.2 FLOOR SYSTEMS IN CAST-IN-PLACE CONCRETE CONSTRUCTION
11.3 A DESIGN CASE STUDY OF A SLAB-AND-BEAM FLOOR SYSTEM
11.4 DETAILING OF FLEXURAL REINFORCEMENT IN CONTINUOUS BEAMS AND SLABS
11.5 STRUCTURAL DRAWINGS AND SPECIFICATIONS

Summary and Review — Design of Continuous Beams, Slabs, and Floor Systems
Problems
CHAPTER 12 FOUNDATIONS

12.1 INTRODUCTION 573

12.2 TYPES OF FOUNDATIONS 574

12.3 GEOTECHNICAL ENGINEERING CONSIDERATIONS 576
 12.3.1 Soil Bearing Capacity 576
 12.3.2 Foundation Depth 578
 12.3.3 Allowable and Factored Soil Bearing Pressure 578

12.4 CSA A23.3 FOOTING DESIGN REQUIREMENTS 581
 12.4.1 Shear Design 581
 12.4.2 Flexural Design 586

12.5 PRACTICAL DESIGN AND CONSTRUCTION GUIDELINES 591

12.6 STRIP FOOTINGS 594

12.7 SPREAD FOOTINGS 602
 12.7.1 Manual Design Procedure 602
 12.7.2 Design of Spread Footings Using Computer Spreadsheets 611

12.8 ECCENTRICALLY LOADED FOOTINGS 614

12.9 COMBINED FOOTINGS 627

12.10 LOAD TRANSFER FROM COLUMN INTO FOOTING 636
 12.10.1 Bearing Strength 636
 12.10.2 Load Transfer at the Base of Reinforced Concrete Columns 637
 12.10.3 Load Transfer at the Base of Steel Columns 639

12.11 STRUCTURAL DRAWINGS AND DETAILS FOR REINFORCED CONCRETE FOOTINGS 643

12.12 SLAB ON GRADE 646
 12.12.1 Background 646
 12.12.2 Loads 647
 12.12.3 Design of Slabs on Grade 648
 12.12.4 Joints 650

Summary and Review — Foundations Problems 652

CHAPTER 13 WALLS 659

13.1 INTRODUCTION 659

13.2 TYPES OF WALLS 659

13.3 GENERAL DESIGN AND DETAILING REQUIREMENTS 664
 13.3.1 Revisions in CSA A23.3.04 664
 13.3.2 CSA A23.3 Reinforcement Requirements 664
 13.3.3 Wall Thickness 667
TABLE OF CONTENTS

13.4 **BEARING WALLS**
 - 13.4.1 Background
 - 13.4.2 Loads
 - 13.4.3 Construction Considerations
 - 13.4.4 Design

13.5 **BASEMENT WALLS**
 - 13.5.1 Background
 - 13.5.2 Loads
 - 13.5.3 Construction Considerations
 - 13.5.4 Design

13.6 **SHEAR WALLS**
 - 13.6.1 Background
 - 13.6.2 Loads and Load Path
 - 13.6.3 Behaviour and Failure Modes
 - 13.6.4 Design of Flexural Shear Walls

13.7 **STRUCTURAL DRAWINGS AND DETAILS FOR REINFORCED CONCRETE WALLS**

13.8 **JOINTS**

 Summary and Review — Walls Problems

APPENDIX A DESIGN AIDS

A.1 **DESIGN AIDS**

A.2 **UNITS**

A.3 **BEAM LOAD DIAGRAMS**

APPENDIX B NOTATION

References

Index