Contents

PREFACE

1 INTRODUCTION
 1.1 Structural Elements
 1.2 Nonlinearities
 1.3 Composite Materials
 1.4 Damping
 1.5 Dynamic Characteristics of Linear Discrete Systems
 1.5.1 One-Degree-of-Freedom Systems
 1.5.2 Multi-Degree-of-Freedom Systems
 1.6 Dynamic Characteristics of Nonlinear Discrete Systems
 1.7 Analyses of Linear Continuous Systems
 1.7.1 Natural Frequencies and Eigenfunctions
 1.7.2 Discretization Using Eigenfunctions
 1.7.3 The Ritz Method
 1.7.4 Finite Element Method
 1.7.5 Weighted Residual Methods
 1.7.6 Initial-Value Methods
 1.8 Analyses of Nonlinear Continuous Systems
CONTENTS

1.8.1 Attacking the Continuous System
1.8.2 Attacking the Discretized System
1.8.3 Time-Averaged Lagrangian

2 ELASTICITY

2.1 Principles of Dynamics
2.1.1 Newton's Second Law and Energy of a Discrete System
2.1.2 Principle of Virtual Work
2.1.3 Hamilton's Theories
2.1.4 Euler-Lagrange Equations
2.1.5 Hamilton's Equations

2.2 Strain-Displacement Relations

2.3 Transformation of Strains and Stresses

2.4 Stress-Strain Relations
2.4.1 Anisotropic Materials
2.4.2 Orthotropic Materials
2.4.3 Isotropic Materials
2.4.4 Material Stiffness and Compliance Matrices
2.4.5 Fiber-Reinforced Lamina

2.5 Governing Equations
2.5.1 Equilibrium Equations
2.5.2 Compatibility Conditions
2.5.3 Energy Formulation of Structures

3 STRINGS AND CABLES

3.1 Modeling of Taut Strings
3.1.1 Exact Equations of Motion
3.1.2 Approximate Equations of Motion without Poisson's Effect
3.1.3 Approximate Equations of Motion with Poisson's Effect

3.2 Reduction of String Model to Two Equations
3.2.1 Attacking the Three-Equation Model
3.2.2 Evaluation of the Two-Equation Model
3.2.3 Discretized Model

3.3 Nonlinear Response of Strings
3.3.1 Frequency-Response Curves
3.3.2 Experiments
3.4 Modeling of Cables 136
 3.4.1 Exact Equations of Motion 139
 3.4.2 Static Deflections 141
 3.4.3 Approximate Equations of Motion 145
3.5 Reduction of Cable Model to Two Equations 146
3.6 Natural Frequencies and Modes of Cables 148
3.7 Discretization of the Cable Equations 150
3.8 Single-Mode Response with Direct Approach 152
 3.8.1 Primary Resonance of an Inplane Mode 153
 3.8.2 Primary Resonance of an out-of-Plane Mode 158
3.9 Single-Mode Response with Discretization Approach 161
 3.9.1 The Case of an Inplane Mode 162
 3.9.2 The Case of an out-of-Plane Mode 167
3.10 Extensional Bars 168

4 BEAMS 171
4.1 Introduction 171
 4.1.1 Beam Theories 172
 4.1.2 Geometric Nonlinearities 176
 4.1.3 Shear Deformations, Rotary Inertias, and Gravity 179
 4.1.4 Elastic Couplings 180
 4.1.5 External and Internal Resonances 180
4.2 Linear Euler-Bernoulli Beam Theory 183
4.3 Linear Shear-Deformable Beam Theories 186
 4.3.1 Third-Order Shear-Deformable Theory 189
 4.3.2 Timoshenko’s Beam Theory 191
 4.3.3 Layerwise Shear-Deformable Theory 192
4.4 Mathematics for Nonlinear Modeling 194
 4.4.1 Coordinate Transformations and Curvatures 194
 4.4.2 Concept of Orthogonal Virtual Rotations 207
 4.4.3 Variation of Curvatures 210
 4.4.4 Concept of Local Displacements 211
4.5 Nonlinear 2-D Euler-Bernoulli Beam Theory 215
 4.5.1 Shortening Effect 221
 4.5.2 Stretching Effect 224
 4.5.3 Lagrangian and Eulerian Coordinates 225
4.6 Nonlinear 3-D Euler-Bernoulli Beam Theory 226
 4.6.1 Isotropic Beams 234
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2</td>
<td>Composite Beams</td>
<td>235</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Taylor Series Expansions</td>
<td>235</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Cantilevered Inextensional Beams</td>
<td>240</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Flexural-Flexural Vibration</td>
<td>244</td>
</tr>
<tr>
<td>4.7</td>
<td>Nonlinear 3-D Curved Beam Theory Accounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for Warpings</td>
<td>245</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Inplane and out-of-Plane Warpings</td>
<td>247</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Fully Nonlinear Jaumann Strains</td>
<td>251</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Equations of Motion</td>
<td>254</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Expansions and Simplified Beam Theories</td>
<td>262</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Applications</td>
<td>263</td>
</tr>
<tr>
<td>5</td>
<td>DYNAMICS OF BEAMS</td>
<td>267</td>
</tr>
<tr>
<td>5.1</td>
<td>Parametrically Excited Cantilever Beams</td>
<td>267</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Experiments</td>
<td>267</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Principal Parametric Resonance</td>
<td>270</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Combination Parametric Resonance</td>
<td>278</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Nonplanar Dynamics</td>
<td>284</td>
</tr>
<tr>
<td>5.2</td>
<td>Transversely Excited Cantilever Beams</td>
<td>291</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Planar Response to a Primary-Resonance</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Excitation</td>
<td></td>
</tr>
<tr>
<td>5.2.2</td>
<td>External Subcombination Resonance</td>
<td>298</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Nonplanar Dynamics</td>
<td>304</td>
</tr>
<tr>
<td>5.3</td>
<td>Clamped-Clamped Buckled Beams</td>
<td>316</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Buckling Problem</td>
<td>320</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Linear Vibration Problem</td>
<td>321</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Nonlinear Local Vibrations - Direct Approach</td>
<td>324</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Nonlinear Local Vibrations - Discretization</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td></td>
</tr>
<tr>
<td>5.3.5</td>
<td>Experiment</td>
<td>331</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Global Dynamics</td>
<td>334</td>
</tr>
<tr>
<td>5.4</td>
<td>Microbeams</td>
<td>341</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Modeling of MEMS Devices</td>
<td>342</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Static Deflection</td>
<td>344</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Linear Mode Shapes and Frequencies</td>
<td>345</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Nonlinear Response to a Primary-Resonance</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>Excitation</td>
<td></td>
</tr>
<tr>
<td>5.4.5</td>
<td>Reduced-Order Models of MEMS Devices</td>
<td>351</td>
</tr>
</tbody>
</table>
6 Surface Analysis

6.1 Initial Curvatures .. 355
6.2 Inplane Strains and Deformed Curvatures 358
6.3 Orthogonal Virtual Rotations 362
 6.3.1 Without Inplane Shear Strains 362
 6.3.2 With Inplane Shear Strains 363
6.4 Variation of Curvatures 365
6.5 Local Displacements and Jaumann Strains 366

7 Plates

7.1 Introduction .. 371
 7.1.1 Plate Theories ... 371
 7.1.2 Geometric Nonlinearities 375
 7.1.3 Plates with Integrated Piezoelectric Materials ... 376
 7.1.4 Linear Vibrations and Buckling of Plates 377
 7.1.5 Nonlinear Analyses of Plates 379
7.2 Linear Classical Plate Theory 382
 7.2.1 Rectangular Plates 382
 7.2.2 Circular Plates 388
 7.2.3 General Plates 392
7.3 Linear Shear-Deformable Plate Theories 396
 7.3.1 Formulation for Curvilinear Coordinate Systems ... 396
 7.3.2 Rectangular and Circular Plates 401
 7.3.3 Different Shear-Warping Functions 402
7.4 Nonlinear Classical Plate Theory 403
 7.4.1 Rectangular Plates 403
 7.4.2 von Kármán Plate Theory in Polar Coordinates ... 408
 7.4.3 Thermoelastic Equations in Cartesian Coordinates ... 412
 7.4.4 Thermoelastic Equations in Polar Coordinates 415
7.5 Nonlinear Modeling of Rectangular Surfaces 417
 7.5.1 Coordinate Transformation, Inplane Strains, and Curvatures 417
 7.5.2 Influence of the Inplane Shear Deformation 420
 7.5.3 Variation of the Global Strains 425
7.6 General Nonlinear Classical Plate Theory 426
7.7 Nonlinear Shear-Deformable Plate Theory 435
 7.7.1 Equations of Motion 436
CONTENTS

7.7.2 Nonlinear First-Order Theory 446
7.7.3 Third-Order Theory with von Kármán Nonlinearity 446
7.8 Nonlinear Layerwise Shear-Deformable Plate Theory 446
 7.8.1 Warps due to External Loads and Actuators 447
 7.8.2 Equations of Motion 457
 7.8.3 Linear Piezoelectric Plate Theory 465
 7.8.4 Actuator-Induced Loads 467
 7.8.5 Thermal and Moisture Effects 467

8 DYNAMICS OF PLATES 469
 8.1 Linear Vibrations of Rectangular Plates 469
 8.1.1 Hinged Edges 470
 8.1.2 Two Hinged Opposite Edges 470
 8.2 Linear Vibrations of Membranes 474
 8.2.1 Circular Membranes 474
 8.2.2 Near Circular Membranes 477
 8.2.3 Elliptic Membranes 480
 8.3 Linear Vibrations of Circular and Annular Plates 481
 8.3.1 Circular Plates 482
 8.3.2 Near Circular and Elliptic Plates 487
 8.3.3 Annular Plates 491
 8.4 Nonlinear Vibrations of Circular Plates 498
 8.4.1 Axisymmetric Vibrations 503
 8.4.2 Asymmetric Vibrations 507
 8.5 Nonlinear Vibrations of Rotating Disks 513
 8.5.1 Static Problem 516
 8.5.2 Natural Frequencies and Mode Shapes 517
 8.5.3 Response to a Primary-Resonance Excitation 522
 8.6 Nonlinear Vibrations of Near-Square Plates 527
 8.7 Micropumps 531
 8.7.1 Annular Plates 532
 8.7.2 Circular Plates 536
 8.8 Thermally Loaded Plates 543
 8.8.1 Linear Natural Frequencies and Mode Shapes 548
 8.8.2 Combination Parametric Resonance of Two Axisymmetric Modes 549

9 SHELLS 559
9.1 Introduction 559
 9.1.1 Shell Theories 560
 9.1.2 Nonlinear Vibrations of Shells 563
9.2 Linear Classical Shell Theory 566
 9.2.1 Different Shell Geometries 566
 9.2.2 Doubly-Curved Shell Theory 571
 9.2.3 Circular Cylindrical Shell Theory 576
9.3 Linear Shear-Deformable Shell Theories 577
 9.3.1 Formulation for General Shells 577
 9.3.2 Equations of Motion for Different Shells 581
 9.3.3 Shear-Warping Functions 581
9.4 Nonlinear Classical Theory for Doubly-Curved Shells 582
9.5 Nonlinear Shear-Deformable Theories for Circular Cylindrical Shells 588
 9.5.1 Equations of Motion 589
 9.5.2 Simplified Shell Theories 603
 9.5.3 Stiffness Matrices 608
 9.5.4 Classical Linear Theories of Circular Cylindrical Shells 611
9.6 Nonlinear Layerwise Shear-Deformable Shell Theory 615
 9.6.1 Strains and Shear-Warping Functions 615
 9.6.2 Inertia Terms 620
 9.6.3 Structural Terms 622
 9.6.4 Equations of Motion 625
 9.6.5 Shear-Warping Functions 627
9.7 Nonlinear Dynamics of Infinitely Long Circular Cylindrical Shells 630
 9.7.1 Governing Equations 631
 9.7.2 Natural Frequencies and Mode Shapes 635
 9.7.3 Primary Resonance of the Breathing Mode 638
9.8 Nonlinear Dynamics of Axisymmetric Motion of Closed Spherical Shells 641
 9.8.1 Equations of Motion 641
 9.8.2 Natural Frequencies and Mode Shapes 646
 9.8.3 Two-to-One Internal Resonance 649

BIBLIOGRAPHY 654

SUBJECT INDEX 732