Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 About Econometrics</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Structure of this Book</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Illustrations and Exercises</td>
<td>4</td>
</tr>
<tr>
<td>2 An Introduction to Linear Regression</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Ordinary Least Squares as an Algebraic Tool</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Ordinary Least Squares</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Simple Linear Regression</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Example: Individual Wages</td>
<td>10</td>
</tr>
<tr>
<td>2.1.4 Matrix Notation</td>
<td>11</td>
</tr>
<tr>
<td>2.2 The Linear Regression Model</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Small Sample Properties of the OLS Estimator</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 The Gauss–Markov Assumptions</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Properties of the OLS Estimator</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3 Example: Individual Wages (Continued)</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Goodness-of-fit</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Hypothesis Testing</td>
<td>22</td>
</tr>
<tr>
<td>2.5.1 A Simple (t)-Test</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2 Example: Individual Wages (Continued)</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3 Testing One Linear Restriction</td>
<td>25</td>
</tr>
<tr>
<td>2.5.4 A Joint Test of Significance of Regression Coefficients</td>
<td>26</td>
</tr>
<tr>
<td>2.5.5 Example: Individual Wages (Continued)</td>
<td>28</td>
</tr>
<tr>
<td>2.5.6 The General Case</td>
<td>29</td>
</tr>
<tr>
<td>2.5.7 Size, Power and (p)-Values</td>
<td>31</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.6 Asymptotic Properties of the OLS Estimator</td>
<td>32</td>
</tr>
<tr>
<td>2.6.1 Consistency</td>
<td>32</td>
</tr>
<tr>
<td>2.6.2 Asymptotic Normality</td>
<td>34</td>
</tr>
<tr>
<td>2.6.3 Small Samples and Asymptotic Theory</td>
<td>36</td>
</tr>
<tr>
<td>2.7 Illustration: The Capital Asset Pricing Model</td>
<td>38</td>
</tr>
<tr>
<td>2.7.1 The CAPM as a Regression Model</td>
<td>39</td>
</tr>
<tr>
<td>2.7.2 Estimating and Testing the CAPM</td>
<td>40</td>
</tr>
<tr>
<td>2.7.3 The World's Largest Hedge Fund</td>
<td>42</td>
</tr>
<tr>
<td>2.8 Multicollinearity</td>
<td>43</td>
</tr>
<tr>
<td>2.8.1 Example: Individual Wages (Continued)</td>
<td>46</td>
</tr>
<tr>
<td>2.9 Missing Data, Outliers and Influential Observations</td>
<td>47</td>
</tr>
<tr>
<td>2.9.1 Outliers and Influential Observations</td>
<td>47</td>
</tr>
<tr>
<td>2.9.2 Robust Estimation Methods</td>
<td>49</td>
</tr>
<tr>
<td>2.9.3 Missing Observations</td>
<td>50</td>
</tr>
<tr>
<td>2.10 Prediction</td>
<td>52</td>
</tr>
<tr>
<td>Wrap-up</td>
<td>53</td>
</tr>
<tr>
<td>Exercises</td>
<td>54</td>
</tr>
<tr>
<td>3 Interpreting and Comparing Regression Models</td>
<td>58</td>
</tr>
<tr>
<td>3.1 Interpreting the Linear Model</td>
<td>58</td>
</tr>
<tr>
<td>3.2 Selecting the Set of Regressors</td>
<td>62</td>
</tr>
<tr>
<td>3.2.1 Misspecifying the Set of Regressors</td>
<td>62</td>
</tr>
<tr>
<td>3.2.2 Selecting Regressors</td>
<td>63</td>
</tr>
<tr>
<td>3.2.3 Comparing Non-nested Models</td>
<td>67</td>
</tr>
<tr>
<td>3.3 Misspecifying the Functional Form</td>
<td>70</td>
</tr>
<tr>
<td>3.3.1 Nonlinear Models</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2 Testing the Functional Form</td>
<td>71</td>
</tr>
<tr>
<td>3.3.3 Testing for a Structural Break</td>
<td>71</td>
</tr>
<tr>
<td>3.4 Illustration: Explaining House Prices</td>
<td>72</td>
</tr>
<tr>
<td>3.5 Illustration: Predicting Stock Index Returns</td>
<td>76</td>
</tr>
<tr>
<td>3.5.1 Model Selection</td>
<td>76</td>
</tr>
<tr>
<td>3.5.2 Forecast Evaluation</td>
<td>79</td>
</tr>
<tr>
<td>3.6 Illustration: Explaining Individual Wages</td>
<td>81</td>
</tr>
<tr>
<td>3.6.1 Linear Models</td>
<td>81</td>
</tr>
<tr>
<td>3.6.2 Loglinear Models</td>
<td>84</td>
</tr>
<tr>
<td>3.6.3 The Effects of Gender</td>
<td>87</td>
</tr>
<tr>
<td>3.6.4 Some Words of Warning</td>
<td>89</td>
</tr>
<tr>
<td>Wrap-up</td>
<td>90</td>
</tr>
<tr>
<td>Exercises</td>
<td>90</td>
</tr>
<tr>
<td>4 Heteroskedasticity and Autocorrelation</td>
<td>94</td>
</tr>
<tr>
<td>4.1 Consequences for the OLS Estimator</td>
<td>94</td>
</tr>
<tr>
<td>4.2 Deriving an Alternative Estimator</td>
<td>96</td>
</tr>
<tr>
<td>4.3 Heteroskedasticity</td>
<td>97</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>97</td>
</tr>
<tr>
<td>4.3.2 Estimator Properties and Hypothesis Testing</td>
<td>100</td>
</tr>
<tr>
<td>4.3.3 When the Variances are Unknown</td>
<td>101</td>
</tr>
</tbody>
</table>
4.3.4 Heteroskedasticity-consistent Standard Errors for OLS 102
4.3.5 Multiplicative Heteroskedasticity 103
4.3.6 Weighted Least Squares with Arbitrary Weights 104
4.4 Testing for Heteroskedasticity 105
4.4.1 Testing for Multiplicative Heteroskedasticity 105
4.4.2 The Breusch–Pagan Test 106
4.4.3 The White Test 106
4.4.4 Which Test? 107
4.5 Illustration: Explaining Labour Demand 107
4.6 Autocorrelation 112
4.6.1 First-order Autocorrelation 113
4.6.2 Unknown ρ 115
4.7 Testing for First-order Autocorrelation 116
4.7.1 Asymptotic Tests 116
4.7.2 The Durbin–Watson Test 117
4.8 Illustration: The Demand for Ice Cream 119
4.9 Alternative Autocorrelation Patterns 122
4.9.1 Higher-order Autocorrelation 122
4.9.2 Moving Average Errors 122
4.10 What to do When you Find Autocorrelation? 123
4.10.1 Misspecification 124
4.10.2 Heteroskedasticity-and-autocorrelation-consistent Standard Errors for OLS 125
4.11 Illustration: Risk Premia in Foreign Exchange Markets 127
4.11.1 Notation 127
4.11.2 Tests for Risk Premia in the 1 Month Market 128
4.11.3 Tests for Risk Premia Using Overlapping Samples 132
Wrap-up 134
Exercises 134

5 Endogenous Regressors, Instrumental Variables and GMM 137
5.1 A Review of the Properties of the OLS Estimator 138
5.2 Cases Where the OLS Estimator Cannot be Saved 141
5.2.1 Autocorrelation with a Lagged Dependent Variable 141
5.2.2 Measurement Error in an Explanatory Variable 142
5.2.3 Endogeneity and Omitted Variable Bias 144
5.2.4 Simultaneity and Reverse Causality 146
5.3 The Instrumental Variables Estimator 148
5.3.1 Estimation with a Single Endogenous Regressor and a Single Instrument 148
5.3.2 Back to the Keynesian model 152
5.3.3 Back to the Measurement Error Problem 153
5.3.4 Multiple Endogenous Regressors 153
5.4 Illustration: Estimating the Returns to Schooling 154
5.5 The Generalized Instrumental Variables Estimator 158
 5.5.1 Multiple Endogenous Regressors with an Arbitrary Number of Instruments 159
 5.5.2 Two-stage Least Squares and the Keynesian Model Again 162
 5.5.3 Specification Tests 163
 5.5.4 Weak Instruments 164
5.6 The Generalized Method of Moments 166
 5.6.1 Example 166
 5.6.2 The Generalized Method of Moments 167
 5.6.3 Some Simple Examples 170
 5.6.4 Weak Identification 171
5.7 Illustration: Estimating Intertemporal Asset Pricing Models 171
 Wrap-up 175
 Exercises 176

6 Maximum Likelihood Estimation and Specification Tests 179
6.1 An Introduction to Maximum Likelihood 180
 6.1.1 Some Examples 180
 6.1.2 General Properties 183
 6.1.3 An Example (Continued) 186
 6.1.4 The Normal Linear Regression Model 187
6.2 Specification Tests 189
 6.2.1 Three Test Principles 189
 6.2.2 Lagrange Multiplier Tests 191
 6.2.3 An Example (Continued) 194
6.3 Tests in the Normal Linear Regression Model 195
 6.3.1 Testing for Omitted Variables 196
 6.3.2 Testing for Heteroskedasticity 197
 6.3.3 Testing for Autocorrelation 198
6.4 Quasi-maximum Likelihood and Moment Conditions Tests 199
 6.4.1 Quasi-maximum Likelihood 199
 6.4.2 Conditional Moment Tests 201
 6.4.3 Testing for Normality 202
 Wrap-up 203
 Exercises 203

7 Models with Limited Dependent Variables 206
7.1 Binary Choice Models 207
 7.1.1 Using Linear Regression? 207
 7.1.2 Introducing Binary Choice Models 207
 7.1.3 An Underlying Latent Model 210
 7.1.4 Estimation 211
7.1.5 Goodness-of-fit
7.1.6 Illustration: The Impact of Unemployment Benefits on Recipiency
7.1.7 Specification Tests in Binary Choice Models
7.1.8 Relaxing Some Assumptions in Binary Choice Models

7.2 Multiresponse Models
7.2.1 Ordered Response Models
7.2.2 About Normalization
7.2.3 Illustration: Explaining Firms’ Credit Ratings
7.2.4 Illustration: Willingness to Pay for Natural Areas
7.2.5 Multinomial Models

7.3 Models for Count Data
7.3.1 The Poisson and Negative Binomial Models
7.3.2 Illustration: Patents and R&D Expenditures

7.4 Tobit Models
7.4.1 The Standard Tobit Model
7.4.2 Estimation
7.4.3 Illustration: Expenditures on Alcohol and Tobacco (Part 1)
7.4.4 Specification Tests in the Tobit Model

7.5 Extensions of Tobit Models
7.5.1 The Tobit II Model
7.5.2 Estimation
7.5.3 Further Extensions
7.5.4 Illustration: Expenditures on Alcohol and Tobacco (Part 2)

7.6 Sample Selection Bias
7.6.1 The Nature of the Selection Problem
7.6.2 Semi-parametric Estimation of the Sample-Selection Model

7.7 Estimating Treatment Effects
7.7.1 Regression-based Estimators
7.7.2 Alternative Approaches

7.8 Duration Models
7.8.1 Hazard Rates and Survival Functions
7.8.2 Samples and Model Estimation
7.8.3 Illustration: Duration of Bank Relationships

Wrap-up
Exercises

8 Univariate Time Series Models
8.1 Introduction
8.1.1 Some Examples
8.1.2 Stationarity and the Autocorrelation Function
8.2 General ARMA Processes
8.2.1 Formulating ARMA Processes 284
8.2.2 Invertibility of Lag Polynomials 287
8.2.3 Common Roots 288
8.3 Stationarity and Unit Roots 289
8.4 Testing for Unit Roots 291
 8.4.1 Testing for Unit Roots in a First-order Autoregressive Model 291
 8.4.2 Testing for Unit Roots in Higher-order Autoregressive Models 294
 8.4.3 Extensions 296
 8.4.4 Illustration: Stock Prices and Earnings 297
8.5 Illustration: Long-run Purchasing Power Parity (Part 1) 300
8.6 Estimation of ARMA Models 304
 8.6.1 Least Squares 304
 8.6.2 Maximum Likelihood 305
8.7 Choosing a Model 306
 8.7.1 The Autocorrelation Function 306
 8.7.2 The Partial Autocorrelation Function 308
 8.7.3 Diagnostic Checking 309
 8.7.4 Criteria for Model Selection 310
8.8 Illustration: The Persistence of Inflation 311
8.9 Predicting with ARMA Models 314
 8.9.1 The Optimal Predictor 315
 8.9.2 Prediction Accuracy 317
 8.9.3 Evaluating predictions 319
8.10 Illustration: The Expectations Theory of the Term Structure 320
8.11 Autoregressive Conditional Heteroskedasticity 325
 8.11.1 ARCH and GARCH Models 325
 8.11.2 Estimation and Prediction 329
 8.11.3 Illustration: Volatility in Daily Exchange Rates 331
8.12 What about Multivariate Models? 333
 Wrap-up 333
 Exercises 334

9 Multivariate Time Series Models 338
 9.1 Dynamic Models with Stationary Variables 339
 9.2 Models with Nonstationary Variables 342
 9.2.1 Spurious Regressions 342
 9.2.2 Cointegration 343
 9.2.3 Cointegration and Error-correction Mechanisms 346
 9.3 Illustration: Long-run Purchasing Power Parity (Part 2) 348
 9.4 Vector Autoregressive Models 350
 9.5 Cointegration: the Multivariate Case 354
 9.5.1 Cointegration in a VAR 354
 9.5.2 Example: Cointegration in a Bivariate VAR 356
 9.5.3 Testing for Cointegration 358
9.5.4 Illustration: Long-run Purchasing Power Parity (Part 3) 360
9.6 Illustration: Money Demand and Inflation 362
Wrap-up 368
Exercises 369

10 Models Based on Panel Data 372
10.1 Introduction to Panel Data Modelling 373
 10.1.1 Efficiency of Parameter Estimators 374
 10.1.2 Identification of Parameters 375
10.2 The Static Linear Model 376
 10.2.1 The Fixed Effects Model 377
 10.2.2 The First-difference Estimator 379
 10.2.3 The Random Effects Model 381
 10.2.4 Fixed Effects or Random Effects? 384
 10.2.5 Goodness-of-fit 386
 10.2.6 Alternative Instrumental Variables Estimators 387
 10.2.7 Robust Inference 389
 10.2.8 Testing for Heteroskedasticity and Autocorrelation 391
 10.2.9 The Fama–MacBeth Approach 392
10.3 Illustration: Explaining Individual Wages 394
10.4 Dynamic Linear Models 396
 10.4.1 An Autoregressive Panel Data Model 396
 10.4.2 Dynamic Models with Exogenous Variables 401
 10.4.3 Too Many Instruments 403
10.5 Illustration: Explaining Capital Structure 405
10.6 Panel Time Series 410
 10.6.1 Heterogeneity 411
 10.6.2 First Generation Panel Unit Root Tests 412
 10.6.3 Second Generation Panel Unit Root Tests 415
 10.6.4 Panel Cointegration Tests 416
10.7 Models with Limited Dependent Variables 417
 10.7.1 Binary Choice Models 418
 10.7.2 The Fixed Effects Logit Model 419
 10.7.3 The Random Effects Probit Model 420
 10.7.4 Tobit Models 422
 10.7.5 Dynamics and the Problem of Initial Conditions 423
 10.7.6 Semi-parametric Alternatives 424
10.8 Incomplete Panels and Selection Bias 425
 10.8.1 Estimation with Randomly Missing Data 426
 10.8.2 Selection Bias and Some Simple Tests 427
 10.8.3 Estimation with Nonrandomly Missing Data 429
10.9 Pseudo Panels and Repeated Cross-sections 430
 10.9.1 The Fixed Effects Model 431
 10.9.2 An Instrumental Variables Interpretation 433
10.9.3 Dynamic Models 434
Wrap-up 435
Exercises 436

A Vectors and Matrices 441
A.1 Terminology 441
A.2 Matrix Manipulations 442
A.3 Properties of Matrices and Vectors 443
A.4 Inverse Matrices 444
A.5 Idempotent Matrices 445
A.6 Eigenvalues and Eigenvectors 445
A.7 Differentiation 446
A.8 Some Least Squares Manipulations 447

B Statistical and Distribution Theory 449
B.1 Discrete Random Variables 449
B.2 Continuous Random Variables 450
B.3 Expectations and Moments 451
B.4 Multivariate Distributions 452
B.5 Conditional Distributions 453
B.6 The Normal Distribution 454
B.7 Related Distributions 457

Bibliography 459

Index 477