Contents

Preface xi

Part I 1

1 Introduction – uncertainty and risk in geotechnical engineering 3
 1.1 Offshore platforms 4
 1.2 Pit mine slopes 11
 1.3 Balancing risk and reliability in a geotechnical design 13
 1.4 Historical development of reliability methods in civil engineering 14
 1.5 Some terminological and philosophical issues 15
 1.6 The organization of this book 17
 1.7 A comment on notation and nomenclature 17

2 Uncertainty 19
 2.1 Randomness, uncertainty, and the world 19
 2.2 Modeling uncertainties in risk and reliability analysis 23
 2.3 Probability 26

3 Probability 35
 3.1 Histograms and frequency diagrams 35
 3.2 Summary statistics 38
 3.3 Probability theory 41
 3.4 Random variables 44
 3.5 Random process models 48
 3.6 Fitting mathematical pdf models to data 56
 3.7 Covariance among variables 60

4 Inference 65
 4.1 Frequentist theory 65
 4.2 Bayesian theory 69
 4.3 Prior probabilities 73
 4.4 Inferences from sampling 78
 4.5 Regression analysis 83
 4.6 Hypothesis tests 88
 4.7 Choice among models 95
CONTENTS

5 Risk, decisions and judgment 97
 5.1 Risk 97
 5.2 Optimizing decisions 106
 5.3 Non-optimizing decisions 118
 5.4 Engineering judgment 121

Part II 127

6 Site characterization 129
 6.1 Developments in site characterization 129
 6.2 Analytical approaches to site characterization 131
 6.3 Modeling site characterization activities 135
 6.4 Some pitfalls of intuitive data evaluation 138
 6.5 Organization of Part II 143

7 Classification and mapping 145
 7.1 Mapping discrete variables 146
 7.2 Classification 147
 7.3 Discriminant analysis 153
 7.4 Mapping 168
 7.5 Carrying out a discriminant or logistic analysis 173

8 Soil variability 177
 8.1 Soil properties 180
 8.2 Index tests and classification of soils 183
 8.3 Consolidation properties 187
 8.4 Permeability 189
 8.5 Strength properties 191
 8.6 Distributional properties 194
 8.7 Measurement error 201

9 Spatial variability within homogeneous deposits 205
 9.1 Trends and variations about trends 205
 9.2 Residual variations 214
 9.3 Estimating autocorrelation and autocovariance 228
 9.4 Variograms and geostatistics 239
 Appendix: algorithm for maximizing log-likelihood of autocovariance 241

10 Random field theory 243
 10.1 Stationary processes 243
 10.2 Mathematical properties of autocovariance functions 246
 10.3 Multivariate (vector) random fields 248
 10.4 Gaussian random fields 249
 10.5 Functions of random fields 249

11 Spatial sampling 257
 11.1 Concepts of sampling 257
 11.2 Common spatial sampling plans 258
11.3 Interpolating random fields 264
11.4 Sampling for autocorrelation 268

12 Search theory 273
12.1 Brief history of search theory 273
12.2 Logic of a search process 275
12.3 Single stage search 279
12.4 Grid search 280
12.5 Inferring target characteristics 286
12.6 Optimal search 290
12.7 Sequential search 298

Part III 301

13 Reliability analysis and error propagation 303
13.1 Loads, resistances and reliability 303
13.2 Results for different distributions of the performance function 306
13.3 Steps and approximations in reliability analysis 310
13.4 Error propagation – statistical moments of the performance function 311
13.5 Solution techniques for practical cases 318
13.6 A simple conceptual model of practical significance 319

14 First order second moment (FOSM) methods 323
14.1 The James Bay dikes 324
14.2 Uncertainty in geotechnical parameters 325
14.3 FOSM calculations 327
14.4 Extrapolations and consequences 337
14.5 Conclusions from the James Bay study 340
14.6 Final comments 342

15 Point estimate methods 345
15.1 Mathematical background 345
15.2 Rosenblueth’s cases and notation 347
15.3 Numerical results for simple cases 351
15.4 Relation to orthogonal polynomial quadrature 353
15.5 Relation with ‘Gauss points’ in the finite element method 355
15.6 Limitations of orthogonal polynomial quadrature 357
15.7 Accuracy, or when to use the point-estimate method 358
15.8 The problem of the number of computation points 364
15.9 Final comments and conclusions 376

16 The Hasofer–Lind approach (FORM) 377
16.1 Justification for improvement – vertical cut in cohesive soil 377
16.2 The Hasofer–Lind formulation 380
16.3 Linear or non-linear failure criteria and uncorrelated variables 384
16.4 Higher order reliability 391
CONTENTS

16.5 Correlated variables 393
16.6 Non-normal variables 395

17 Monte Carlo simulation methods 399
17.1 Basic considerations 399
17.2 Computer programming considerations 404
17.3 Simulation of random processes 410
17.4 Variance reduction methods 414
17.5 Summary 430

18 Load and resistance factor design 433
18.1 Limit state design and code development 433
18.2 Load and resistance factor design 436
18.3 Foundation design based on LRFD 444
18.4 Concluding remarks 455

19 Stochastic finite elements 457
19.1 Elementary finite element issues 457
19.2 Correlated properties 461
19.3 Explicit formulation 465
19.4 Monte Carlo study of differential settlement 468
19.5 Summary and conclusions 469

Part IV 471

20 Event tree analysis 473
20.1 Systems failure 473
20.2 Influence diagrams 482
20.3 Constructing event trees 488
20.4 Branch probabilities 493
20.5 Levee example revisited 500

21 Expert opinion 501
21.1 Expert opinion in geotechnical practice 501
21.2 How do people estimate subjective probabilities? 502
21.3 How well do people estimate subjective probabilities? 503
21.4 Can people learn to be well-calibrated? 508
21.5 Protocol for assessing subjective probabilities 509
21.6 Conducting a process to elicit quantified judgment 509
21.7 Practical suggestions and techniques 521
21.8 Summary 522

22 System reliability assessment 523
22.1 Concepts of system reliability 523
22.2 Dependencies among component failures 524
22.3 Event tree representations 525
22.4 Fault tree representations 529